Theory of Linear Arithmetic

This example asserts three constraints over an integer variable x and a real variable y . Firstly, it checks that these constraints entail an upper bound on the difference y - x <= 2/3 . Secondly, it checks that this bound is tight by asserting y - x = 2/3 and checking for satisfiability. The two checks are separated by using push and pop .

examples/api/cpp/linear_arith.cpp

 1 /******************************************************************************
 2  * Top contributors (to current version):
 3  *   Aina Niemetz, Tim King, Mathias Preiner
 4  *
 5  * This file is part of the cvc5 project.
 6  *
 7  * Copyright (c) 2009-2022 by the authors listed in the file AUTHORS
 8  * in the top-level source directory and their institutional affiliations.
 9  * All rights reserved.  See the file COPYING in the top-level source
10  * directory for licensing information.
11  * ****************************************************************************
12  *
13  * A simple demonstration of the linear arithmetic solving capabilities and
14  * the push pop of cvc5. This also gives an example option.
15  */
16 
17 #include <iostream>
18 
19 #include <cvc5/cvc5.h>
20 
21 using namespace std;
22 using namespace cvc5;
23 
24 int main()
25 {
26   Solver slv;
27   slv.setLogic("QF_LIRA"); // Set the logic
28 
29   // Prove that if given x (Integer) and y (Real) then
30   // the maximum value of y - x is 2/3
31 
32   // Sorts
33   Sort real = slv.getRealSort();
34   Sort integer = slv.getIntegerSort();
35 
36   // Variables
37   Term x = slv.mkConst(integer, "x");
38   Term y = slv.mkConst(real, "y");
39 
40   // Constants
41   Term three = slv.mkInteger(3);
42   Term neg2 = slv.mkInteger(-2);
43   Term two_thirds = slv.mkReal(2, 3);
44 
45   // Terms
46   Term three_y = slv.mkTerm(MULT, {three, y});
47   Term diff = slv.mkTerm(SUB, {y, x});
48 
49   // Formulas
50   Term x_geq_3y = slv.mkTerm(GEQ, {x, three_y});
51   Term x_leq_y = slv.mkTerm(LEQ, {x, y});
52   Term neg2_lt_x = slv.mkTerm(LT, {neg2, x});
53 
54   Term assertions = slv.mkTerm(AND, {x_geq_3y, x_leq_y, neg2_lt_x});
55 
56   cout << "Given the assertions " << assertions << endl;
57   slv.assertFormula(assertions);
58 
59 
60   slv.push();
61   Term diff_leq_two_thirds = slv.mkTerm(LEQ, {diff, two_thirds});
62   cout << "Prove that " << diff_leq_two_thirds << " with cvc5." << endl;
63   cout << "cvc5 should report UNSAT." << endl;
64   cout << "Result from cvc5 is: "
65        << slv.checkSatAssuming(diff_leq_two_thirds.notTerm()) << endl;
66   slv.pop();
67 
68   cout << endl;
69 
70   slv.push();
71   Term diff_is_two_thirds = slv.mkTerm(EQUAL, {diff, two_thirds});
72   slv.assertFormula(diff_is_two_thirds);
73   cout << "Show that the assertions are consistent with " << endl;
74   cout << diff_is_two_thirds << " with cvc5." << endl;
75   cout << "cvc5 should report SAT." << endl;
76   cout << "Result from cvc5 is: " << slv.checkSat() << endl;
77   slv.pop();
78 
79   cout << "Thus the maximum value of (y - x) is 2/3."<< endl;
80 
81   return 0;
82 }