Theory of Bit-Vectors and Arrays 
examples/api/cpp/bitvectors_and_arrays.cpp
 1/******************************************************************************
 2 * Top contributors (to current version):
 3 *   Liana Hadarean, Aina Niemetz, Mathias Preiner
 4 *
 5 * This file is part of the cvc5 project.
 6 *
 7 * Copyright (c) 2009-2022 by the authors listed in the file AUTHORS
 8 * in the top-level source directory and their institutional affiliations.
 9 * All rights reserved.  See the file COPYING in the top-level source
10 * directory for licensing information.
11 * ****************************************************************************
12 *
13 * A simple demonstration of the solving capabilities of the cvc5
14 * bit-vector and array solvers.
15 *
16 */
17
18#include <cvc5/cvc5.h>
19
20#include <cmath>
21#include <iostream>
22
23using namespace std;
24using namespace cvc5;
25
26int main()
27{
28  Solver slv;
29  slv.setOption("produce-models", "true");      // Produce Models
30  slv.setOption("output-language", "smtlib"); // output-language
31  slv.setLogic("QF_AUFBV");                   // Set the logic
32
33  // Consider the following code (where size is some previously defined constant):
34  //
35  //
36  //   Assert (current_array[0] > 0);
37  //   for (unsigned i = 1; i < k; ++i) {
38  //     current_array[i] = 2 * current_array[i - 1];
39  //     Assert (current_array[i-1] < current_array[i]);
40  //     }
41  //
42  // We want to check whether the assertion in the body of the for loop holds
43  // throughout the loop.
44
45  // Setting up the problem parameters
46  unsigned k = 4;                // number of unrollings (should be a power of 2)
47  unsigned index_size = log2(k); // size of the index
48
49
50  // Sorts
51  Sort elementSort = slv.mkBitVectorSort(32);
52  Sort indexSort = slv.mkBitVectorSort(index_size);
53  Sort arraySort = slv.mkArraySort(indexSort, elementSort);
54
55  // Variables
56  Term current_array = slv.mkConst(arraySort, "current_array");
57
58  // Making a bit-vector constant
59  Term zero = slv.mkBitVector(index_size, 0u);
60
61  // Asserting that current_array[0] > 0
62  Term current_array0 = slv.mkTerm(Kind::SELECT, {current_array, zero});
63  Term current_array0_gt_0 = slv.mkTerm(
64      Kind::BITVECTOR_SGT, {current_array0, slv.mkBitVector(32, 0u)});
65  slv.assertFormula(current_array0_gt_0);
66
67  // Building the assertions in the loop unrolling
68  Term index = slv.mkBitVector(index_size, 0u);
69  Term old_current = slv.mkTerm(Kind::SELECT, {current_array, index});
70  Term two = slv.mkBitVector(32, 2u);
71
72  std::vector<Term> assertions;
73  for (unsigned i = 1; i < k; ++i) {
74    index = slv.mkBitVector(index_size, i);
75    Term new_current = slv.mkTerm(Kind::BITVECTOR_MULT, {two, old_current});
76    // current[i] = 2 * current[i-1]
77    current_array =
78        slv.mkTerm(Kind::STORE, {current_array, index, new_current});
79    // current[i-1] < current [i]
80    Term current_slt_new_current =
81        slv.mkTerm(Kind::BITVECTOR_SLT, {old_current, new_current});
82    assertions.push_back(current_slt_new_current);
83
84    old_current = slv.mkTerm(Kind::SELECT, {current_array, index});
85  }
86
87  Term query = slv.mkTerm(Kind::NOT, {slv.mkTerm(Kind::AND, assertions)});
88
89  cout << "Asserting " << query << " to cvc5 " << endl;
90  slv.assertFormula(query);
91  cout << "Expect sat. " << endl;
92  cout << "cvc5: " << slv.checkSatAssuming(slv.mkTrue()) << endl;
93
94  // Getting the model
95  cout << "The satisfying model is: " << endl;
96  cout << "  current_array = " << slv.getValue(current_array) << endl;
97  cout << "  current_array[0] = " << slv.getValue(current_array0) << endl;
98  return 0;
99}
            examples/api/java/BitVectorsAndArrays.java
  1/******************************************************************************
  2 * Top contributors (to current version):
  3 *   Mudathir Mohamed, Morgan Deters, Liana Hadarean
  4 *
  5 * This file is part of the cvc5 project.
  6 *
  7 * Copyright (c) 2009-2022 by the authors listed in the file AUTHORS
  8 * in the top-level source directory and their institutional affiliations.
  9 * All rights reserved.  See the file COPYING in the top-level source
 10 * directory for licensing information.
 11 * ****************************************************************************
 12 *
 13 * A simple demonstration of the solving capabilities of the cvc5
 14 * bit-vector solver.
 15 *
 16 */
 17
 18import io.github.cvc5.*;
 19import java.util.*;
 20
 21public class BitVectorsAndArrays
 22{
 23  private static int log2(int n)
 24  {
 25    return (int) Math.round(Math.log(n) / Math.log(2));
 26  }
 27
 28  public static void main(String[] args) throws CVC5ApiException
 29  {
 30    Solver slv = new Solver();
 31    {
 32      slv.setOption("produce-models", "true"); // Produce Models
 33      slv.setOption("output-language", "smtlib"); // output-language
 34      slv.setLogic("QF_AUFBV"); // Set the logic
 35
 36      // Consider the following code (where size is some previously defined constant):
 37      //
 38      //
 39      //   Assert (current_array[0] > 0);
 40      //   for (unsigned i = 1; i < k; ++i) {
 41      //     current_array[i] = 2 * current_array[i - 1];
 42      //     Assert (current_array[i-1] < current_array[i]);
 43      //     }
 44      //
 45      // We want to check whether the assertion in the body of the for loop holds
 46      // throughout the loop.
 47
 48      // Setting up the problem parameters
 49      int k = 4; // number of unrollings (should be a power of 2)
 50      int index_size = log2(k); // size of the index
 51
 52      // Sorts
 53      Sort elementSort = slv.mkBitVectorSort(32);
 54      Sort indexSort = slv.mkBitVectorSort(index_size);
 55      Sort arraySort = slv.mkArraySort(indexSort, elementSort);
 56
 57      // Variables
 58      Term current_array = slv.mkConst(arraySort, "current_array");
 59
 60      // Making a bit-vector constant
 61      Term zero = slv.mkBitVector(index_size, 0);
 62
 63      // Asserting that current_array[0] > 0
 64      Term current_array0 = slv.mkTerm(Kind.SELECT, current_array, zero);
 65      Term current_array0_gt_0 =
 66          slv.mkTerm(Kind.BITVECTOR_SGT, current_array0, slv.mkBitVector(32, 0));
 67      slv.assertFormula(current_array0_gt_0);
 68
 69      // Building the assertions in the loop unrolling
 70      Term index = slv.mkBitVector(index_size, 0);
 71      Term old_current = slv.mkTerm(Kind.SELECT, current_array, index);
 72      Term two = slv.mkBitVector(32, 2);
 73
 74      List<Term> assertions = new ArrayList<Term>();
 75      for (int i = 1; i < k; ++i)
 76      {
 77        index = slv.mkBitVector(index_size, i);
 78        Term new_current = slv.mkTerm(Kind.BITVECTOR_MULT, two, old_current);
 79        // current[i] = 2 * current[i-1]
 80        current_array = slv.mkTerm(Kind.STORE, current_array, index, new_current);
 81        // current[i-1] < current [i]
 82        Term current_slt_new_current = slv.mkTerm(Kind.BITVECTOR_SLT, old_current, new_current);
 83        assertions.add(current_slt_new_current);
 84
 85        old_current = slv.mkTerm(Kind.SELECT, current_array, index);
 86      }
 87
 88      Term query = slv.mkTerm(Kind.NOT, slv.mkTerm(Kind.AND, assertions.toArray(new Term[0])));
 89
 90      System.out.println("Asserting " + query + " to cvc5 ");
 91      slv.assertFormula(query);
 92      System.out.println("Expect sat. ");
 93      System.out.println("cvc5: " + slv.checkSatAssuming(slv.mkTrue()));
 94
 95      // Getting the model
 96      System.out.println("The satisfying model is: ");
 97      System.out.println("  current_array = " + slv.getValue(current_array));
 98      System.out.println("  current_array[0] = " + slv.getValue(current_array0));
 99    }
100    Context.deletePointers();
101  }
102}
            examples/api/python/pythonic/bitvectors_and_arrays.py
 1from cvc5.pythonic import *
 2
 3if __name__ == '__main__':
 4    # Consider the following (where k is some previously defined constant):
 5    #
 6    #
 7    #   Assert (current_array[0] > 0);
 8    #   for (unsigned i = 1; i < k; ++i) {
 9    #     current_array[i] = 2 * current_array[i - 1];
10    #     Assert (current_array[i-1] < current_array[i]);
11    #   }
12    #
13    # We want to check whether the assertion in the body of the for loop holds
14    # throughout the loop.
15    k = 4
16    idx_bits = int(math.ceil(math.log(k, 2)))
17
18    init_array = Array('init_arr', BitVecSort(idx_bits), BitVecSort(32))
19    array = init_array
20    assertions = []
21    for i in range(1, k):
22        array = Store(array, i, 2 * Select(array, i - 1))
23        assertions.append(Select(array, i - 1) < Select(array, i))
24    # Does *not* hold.
25    # If the first element is large enough, the multiplication overflows.
26    prove(Implies(Select(init_array, 0) > 0, And(*assertions)))
            examples/api/python/bitvectors_and_arrays.py
 1#!/usr/bin/env python
 2###############################################################################
 3# Top contributors (to current version):
 4#   Makai Mann, Aina Niemetz, Alex Ozdemir
 5#
 6# This file is part of the cvc5 project.
 7#
 8# Copyright (c) 2009-2022 by the authors listed in the file AUTHORS
 9# in the top-level source directory and their institutional affiliations.
10# All rights reserved.  See the file COPYING in the top-level source
11# directory for licensing information.
12# #############################################################################
13#
14# A simple demonstration of the solving capabilities of the cvc5
15# bit-vector and array solvers through the Python API. This is a direct
16# translation of bitvectors_and_arrays-new.cpp.
17##
18
19import cvc5
20from cvc5 import Kind
21
22import math
23
24if __name__ == "__main__":
25    slv = cvc5.Solver()
26    slv.setOption("produce-models", "true")
27    slv.setOption("output-language", "smtlib")
28    slv.setLogic("QF_AUFBV")
29
30    # Consider the following code (where size is some previously defined constant):
31    #
32    #
33    #   Assert (current_array[0] > 0);
34    #   for (unsigned i = 1; i < k; ++i) {
35    #     current_array[i] = 2 * current_array[i - 1];
36    #     Assert (current_array[i-1] < current_array[i]);
37    #     }
38    #
39    # We want to check whether the assertion in the body of the for loop holds
40    # throughout the loop.
41
42    # Setting up the problem parameters
43    k = 4
44    index_size = int(math.ceil(math.log(k, 2)))
45
46    # Sorts
47    elementSort = slv.mkBitVectorSort(32)
48    indexSort = slv.mkBitVectorSort(index_size)
49    arraySort = slv.mkArraySort(indexSort, elementSort)
50
51    # Variables
52    current_array = slv.mkConst(arraySort, "current_array")
53
54    # Making a bit-vector constant
55    zero = slv.mkBitVector(index_size, 0)
56
57    # Test making a constant array
58    constarr0 = slv.mkConstArray(arraySort, slv.mkBitVector(32, 0))
59
60    # Asserting that current_array[0] > 0
61    current_array0 = slv.mkTerm(Kind.SELECT, current_array, zero)
62    current_array0_gt_0 = slv.mkTerm(Kind.BITVECTOR_SGT,
63                                     current_array0,
64                                     slv.mkBitVector(32, 0))
65    slv.assertFormula(current_array0_gt_0)
66
67    # Building the assertions in the loop unrolling
68    index = slv.mkBitVector(index_size, 0)
69    old_current = slv.mkTerm(Kind.SELECT, current_array, index)
70    two = slv.mkBitVector(32, 2)
71
72    assertions = []
73    for i in range(1, k):
74        index = slv.mkBitVector(index_size, i)
75        new_current = slv.mkTerm(Kind.BITVECTOR_MULT, two, old_current)
76        # current[i] = 2*current[i-1]
77        current_array = \
78                slv.mkTerm(Kind.STORE, current_array, index, new_current)
79        # current[i-1] < current[i]
80        current_slt_new_current = \
81                slv.mkTerm(Kind.BITVECTOR_SLT, old_current, new_current)
82        assertions.append(current_slt_new_current)
83        old_current = slv.mkTerm(Kind.SELECT, current_array, index)
84
85    query = slv.mkTerm(Kind.NOT, slv.mkTerm(Kind.AND, *assertions))
86
87    print("Asserting {} to cvc5".format(query))
88    slv.assertFormula(query)
89    print("Expect sat.")
90    print("cvc5:", slv.checkSatAssuming(slv.mkTrue()))
91
92    # Getting the model
93    print("The satisfying model is: ")
94    print(" current_array =", slv.getValue(current_array))
95    print(" current_array[0]", slv.getValue(current_array0))
            examples/api/smtlib/bitvectors_and_arrays.smt2
 1(set-logic QF_AUFBV)
 2(set-option :produce-models true)
 3
 4; Consider the following code (where size is some previously defined constant):
 5
 6
 7;   Assert (current_array[0] > 0);
 8;   for (unsigned i = 1; i < k; ++i) {
 9;     current_array[i] = 2 * current_array[i - 1];
10;     Assert (current_array[i-1] < current_array[i]);
11;     }
12
13; We want to check whether the assertion in the body of the for loop holds
14; throughout the loop. We will do so for k = 4.
15
16
17(define-sort Index () (_ BitVec 2))
18(define-sort Element () (_ BitVec 32))
19(define-sort ArraySort () (Array Index Element))
20
21; Declaring the array
22(declare-const current_array ArraySort)
23
24; Making utility bit-vector constants
25(define-const zeroI Index (_ bv0 2))
26(define-const oneI Index (_ bv1 2))
27(define-const twoI Index (_ bv2 2))
28(define-const threeI Index (_ bv3 2))
29
30(define-const zeroE Element (_ bv0 32))
31(define-const twoE Element (_ bv2 32))
32
33; Asserting that current_array[0] > 0
34(assert (bvsgt (select current_array zeroI) zeroE))
35
36; Building the formulas representing loop unrolling
37
38; current_array[0] < array [1]
39(define-const unroll1 Bool (bvslt (select current_array zeroI) (bvmul twoE (select current_array zeroI))))
40; current_array[1] = 2 * current_array[0]
41(define-const current_array_ ArraySort (store current_array oneI (bvmul twoE (select current_array zeroI))))
42
43; current_array[1] < array [2]
44(define-const unroll2 Bool (bvslt (select current_array_ oneI) (bvmul twoE (select current_array_ oneI))))
45; current_array[2] = 2 * current_array[1]
46(define-const current_array__ ArraySort (store current_array_ twoI (bvmul twoE (select current_array_ oneI))))
47
48; current_array[2] < array [3]
49(define-const unroll3 Bool (bvslt (select current_array_ twoI) (bvmul twoE (select current_array_ twoI))))
50; current_array[3] = 2 * current_array[2]
51(define-const current_array___ ArraySort (store current_array_ threeI (bvmul twoE (select current_array_ twoI))))
52
53(assert (not (and unroll1 unroll2 unroll3)))
54
55(check-sat)
56(get-value (current_array___ (select current_array___ zeroI)))