ProofRule and ProofRewriteRule
Enum class
ProofRule
captures the reasoning steps
performed by the SAT solver, the theory solvers and the preprocessor. It
represents the inference rules used to derive conclusions within a proof.
Enum class
ProofRewriteRule
pertains to
rewrites performed on terms. These identifiers are arguments of the proof rules
THEORY_REWRITE
and
DSL_REWRITE
.
-
enum class
cvc5::ProofRule
-
std::ostream& cvc5::operator<< (std::ostream& out, ProofRule pc)
-
enum class
cvc5::ProofRewriteRule
-
std::ostream& cvc5::operator<< (std::ostream& out, ProofRewriteRule pc)
-
enum
class
cvc5
::
ProofRule
-
An enumeration for proof rules. This enumeration is analogous to Kind for Node objects.
All proof rules are given as inference rules, presented in the following form:
\[\texttt{RULENAME}: \inferruleSC{\varphi_1 \dots \varphi_n \mid t_1 \dots t_m}{\psi}{if $C$}\]where we call \(\varphi_i\) its premises or children, \(t_i\) its arguments, \(\psi\) its conclusion, and \(C\) its side condition. Alternatively, we can write the application of a proof rule as
(RULENAME F1 ... Fn :args t1 ... tm)
, omitting the conclusion (since it can be uniquely determined from premises and arguments). Note that premises are sometimes given as proofs, i.e., application of proof rules, instead of formulas. This abuses the notation to see proof rule applications and their conclusions interchangeably.Conceptually, the following proof rules form a calculus whose target user is the Node-level theory solvers. This means that the rules below are designed to reason about, among other things, common operations on Node objects like Rewriter::rewrite or Node::substitute. It is intended to be translated or printed in other formats.
The following ProofRule values include core rules and those categorized by theory, including the theory of equality.
The “core rules” include two distinguished rules which have special status: (1)
ASSUME
, which represents an open leaf in a proof; and (2)SCOPE
, which encloses a scope (a subproof) with a set of scoped assumptions. The core rules additionally correspond to generic operations that are done internally on nodes, e.g., calling Rewriter::rewrite() .Rules with prefix
MACRO_
are those that can be defined in terms of other rules. These exist for convenience and can be replaced by their definition in post-processing.Values:
-
enumerator
ASSUME
-
Assumption (a leaf)
\[\inferrule{- \mid F}{F}\]This rule has special status, in that an application of assume is an open leaf in a proof that is not (yet) justified. An assume leaf is analogous to a free variable in a term, where we say “F is a free assumption in proof P” if it contains an application of F that is not bound by
SCOPE
(see below).
-
enumerator
SCOPE
-
Scope (a binder for assumptions)
\[\inferruleSC{F \mid F_1 \dots F_n}{(F_1 \land \dots \land F_n) \Rightarrow F}{if $F\neq\bot$} \textrm{ or } \inferruleSC{F \mid F_1 \dots F_n}{\neg (F_1 \land \dots \land F_n)}{if $F=\bot$}\]This rule has a dual purpose with
ASSUME
. It is a way to close assumptions in a proof. We require that \(F_1 \dots F_n\) are free assumptions in P and say that \(F_1 \dots F_n\) are not free in(SCOPE P)
. In other words, they are bound by this application. For example, the proof node:(SCOPE (ASSUME F) :args F)
has the conclusion \(F \Rightarrow F\) and has no free assumptions. More generally, a proof with no free assumptions always concludes a valid formula.
-
enumerator
SUBS
-
Builtin theory – Substitution
\[\inferrule{F_1 \dots F_n \mid t, ids?}{t = t \circ \sigma_{ids}(F_n) \circ \cdots \circ \sigma_{ids}(F_1)}\]where \(\sigma_{ids}(F_i)\) are substitutions, which notice are applied in reverse order. Notice that \(ids\) is a MethodId identifier, which determines how to convert the formulas \(F_1 \dots F_n\) into substitutions. It is an optional argument, where by default the premises are equalities of the form (= x y) and converted into substitutions \(x\mapsto y\) .
-
enumerator
MACRO_REWRITE
-
Builtin theory – Rewrite
\[\inferrule{- \mid t, idr}{t = \texttt{rewrite}_{idr}(t)}\]where \(idr\) is a MethodId identifier, which determines the kind of rewriter to apply, e.g. Rewriter::rewrite.
-
enumerator
EVALUATE
-
Builtin theory – Evaluate
\[\inferrule{- \mid t}{t = \texttt{evaluate}(t)}\]where \(\texttt{evaluate}\) is implemented by calling the method \(\texttt{Evalutor::evaluate}\) in theory/evaluator.h with an empty substitution. Note this is equivalent to:
(REWRITE t MethodId::RW_EVALUATE)
.
-
enumerator
ACI_NORM
-
Builtin theory – associative/commutative/idempotency/identity normalization
\[\inferrule{- \mid t = s}{t = s}\]where \(\texttt{expr::isACNorm(t, s)} = \top\) . For details, see expr/nary_term_util.h . This method normalizes currently based on two kinds of operators: (1) those that are associative, commutative, idempotent, and have an identity element (examples are or, and, bvand), (2) those that are associative and have an identity element (examples are str.++, re.++).
-
enumerator
MACRO_SR_EQ_INTRO
-
Builtin theory – Substitution + Rewriting equality introduction
In this rule, we provide a term \(t\) and conclude that it is equal to its rewritten form under a (proven) substitution.
\[\inferrule{F_1 \dots F_n \mid t, (ids (ida (idr)?)?)?}{t = \texttt{rewrite}_{idr}(t \circ \sigma_{ids, ida}(F_n) \circ \cdots \circ \sigma_{ids, ida}(F_1))}\]In other words, from the point of view of Skolem forms, this rule transforms \(t\) to \(t'\) by standard substitution + rewriting.
The arguments \(ids\) , \(ida\) and \(idr\) are optional and specify the identifier of the substitution, the substitution application and rewriter respectively to be used. For details, see theory/builtin/proof_checker.h .
-
enumerator
MACRO_SR_PRED_INTRO
-
Builtin theory – Substitution + Rewriting predicate introduction
In this rule, we provide a formula \(F\) and conclude it, under the condition that it rewrites to true under a proven substitution.
\[\inferrule{F_1 \dots F_n \mid F, (ids (ida (idr)?)?)?}{F}\]where \(\texttt{rewrite}_{idr}(F \circ \sigma_{ids, ida}(F_n) \circ \cdots \circ \sigma_{ids, ida}(F_1)) = \top\) and \(ids\) and \(idr\) are method identifiers.
More generally, this rule also holds when \(\texttt{Rewriter::rewrite}(\texttt{toOriginal}(F')) = \top\) where \(F'\) is the result of the left hand side of the equality above. Here, notice that we apply rewriting on the original form of \(F'\) , meaning that this rule may conclude an \(F\) whose Skolem form is justified by the definition of its (fresh) Skolem variables. For example, this rule may justify the conclusion \(k = t\) where \(k\) is the purification Skolem for \(t\) , e.g. where the original form of \(k\) is \(t\) .
Furthermore, notice that the rewriting and substitution is applied only within the side condition, meaning the rewritten form of the original form of \(F\) does not escape this rule.
-
enumerator
MACRO_SR_PRED_ELIM
-
Builtin theory – Substitution + Rewriting predicate elimination
\[\inferrule{F, F_1 \dots F_n \mid (ids (ida (idr)?)?)?}{\texttt{rewrite}_{idr}(F \circ \sigma_{ids, ida}(F_n) \circ \cdots \circ \sigma_{ids, ida}(F_1))}\]where \(ids\) and \(idr\) are method identifiers.
We rewrite only on the Skolem form of \(F\) , similar to
MACRO_SR_EQ_INTRO
.
-
enumerator
MACRO_SR_PRED_TRANSFORM
-
Builtin theory – Substitution + Rewriting predicate elimination
\[\inferrule{F, F_1 \dots F_n \mid G, (ids (ida (idr)?)?)?}{G}\]where
\[\begin{split}\texttt{rewrite}_{idr}(F \circ \sigma_{ids, ida}(F_n) \circ\cdots \circ \sigma_{ids, ida}(F_1)) =\\ \texttt{rewrite}_{idr}(G \circ \sigma_{ids, ida}(F_n) \circ \cdots \circ \sigma_{ids, ida}(F_1))\end{split}\]More generally, this rule also holds when: \(\texttt{Rewriter::rewrite}(\texttt{toOriginal}(F')) = \texttt{Rewriter::rewrite}(\texttt{toOriginal}(G'))\) where \(F'\) and \(G'\) are the result of each side of the equation above. Here, original forms are used in a similar manner to
MACRO_SR_PRED_INTRO
above.
-
enumerator
ENCODE_EQ_INTRO
-
Builtin theory – Encode equality introduction
\[\inferrule{- \mid t}{t=t'}\]where \(t\) and \(t'\) are equivalent up to their encoding in an external proof format.
More specifically, it is the case that \(\texttt{RewriteDbNodeConverter::postConvert}(t) = t;\) . This conversion method for instance may drop user patterns from quantified formulas or change the representation of \(t\) in a way that is a no-op in external proof formats.
Note this rule can be treated as a
REFL
when appropriate in external proof formats.
-
enumerator
DSL_REWRITE
-
Builtin theory – DSL rewrite
\[\inferrule{F_1 \dots F_n \mid id t_1 \dots t_n}{F}\]where id is a
ProofRewriteRule
whose definition in the RARE DSL is \(\forall x_1 \dots x_n. (G_1 \wedge G_n) \Rightarrow G\) where for \(i=1, \dots n\) , we have that \(F_i = \sigma(G_i)\) and \(F = \sigma(G)\) where \(\sigma\) is the substitution \(\{x_1\mapsto t_1,\dots,x_n\mapsto t_n\}\) .Notice that the application of the substitution takes into account the possible list semantics of variables \(x_1 \ldots x_n\) . If \(x_i\) is a variable with list semantics, then \(t_i\) denotes a list of terms. The substitution implemented by \(\texttt{expr::narySubstitute}\) (for details, see expr/nary_term_util.h ) which replaces each \(x_i\) with the list \(t_i\) in its place.
-
enumerator
THEORY_REWRITE
-
Other theory rewrite rules
\[\inferrule{- \mid id, t = t'}{t = t'}\]where id is the
ProofRewriteRule
of the theory rewrite rule which transforms \(t\) to \(t'\) .In contrast to
DSL_REWRITE
, theory rewrite rules used by this proof rule are not necessarily expressible in RARE. Each rule that can be used in this proof rule are documented explicitly in cases within theProofRewriteRule
enum.
-
enumerator
ANNOTATION
-
Builtin theory – Annotation
\[\inferrule{F \mid a_1 \dots a_n}{F}\]The terms \(a_1 \dots a_n\) can be anything used to annotate the proof node, one example is where \(a_1\) is a theory::InferenceId.
-
enumerator
ITE_EQ
-
Processing rules – If-then-else equivalence
\[\inferrule{- \mid \ite{C}{t_1}{t_2}}{\ite{C}{((\ite{C}{t_1}{t_2}) = t_1)}{((\ite{C}{t_1}{t_2}) = t_2)}}\]
-
enumerator
TRUST
-
Trusted rule
\[\inferrule{F_1 \dots F_n \mid tid, F, ...}{F}\]where \(tid\) is an identifier and \(F\) is a formula. This rule is used when a formal justification of an inference step cannot be provided. The formulas \(F_1 \dots F_n\) refer to a set of formulas that entail \(F\) , which may or may not be provided.
-
enumerator
TRUST_THEORY_REWRITE
-
Trusted rules – Theory rewrite
\[\inferrule{- \mid F, tid, rid}{F}\]where \(F\) is an equality of the form \(t = t'\) where \(t'\) is obtained by applying the kind of rewriting given by the method identifier \(rid\) , which is one of:
RW_REWRITE_THEORY_PRE
,RW_REWRITE_THEORY_POST
,RW_REWRITE_EQ_EXT
. Notice that the checker for this rule does not replay the rewrite to ensure correctness, since theory rewriter methods are not static. For example, the quantifiers rewriter involves constructing new bound variables that are not guaranteed to be consistent on each call.
-
enumerator
SAT_REFUTATION
-
SAT Refutation for assumption-based unsat cores
\[\inferrule{F_1 \dots F_n \mid -}{\bot}\]where \(F_1 \dots F_n\) correspond to the unsat core determined by the SAT solver.
-
enumerator
DRAT_REFUTATION
-
DRAT Refutation
\[\inferrule{F_1 \dots F_n \mid D, P}{\bot}\]where \(F_1 \dots F_n\) correspond to the clauses in the DIMACS file given by filename D and P is a filename of a file storing a DRAT proof.
-
enumerator
SAT_EXTERNAL_PROVE
-
SAT external prove Refutation
\[\inferrule{F_1 \dots F_n \mid D}{\bot}\]where \(F_1 \dots F_n\) correspond to the input clauses in the DIMACS file D .
-
enumerator
RESOLUTION
-
Boolean – Resolution
\[\inferrule{C_1, C_2 \mid pol, L}{C}\]where
-
\(C_1\) and \(C_2\) are nodes viewed as clauses, i.e., either an
OR
node with each children viewed as a literal or a node viewed as a literal. Note that anOR
node could also be a literal. -
\(pol\) is either true or false, representing the polarity of the pivot on the first clause
-
\(L\) is the pivot of the resolution, which occurs as is (resp. under a
NOT
) in \(C_1\) and negatively (as is) in \(C_2\) if \(pol = \top\) ( \(pol = \bot\) ).
\(C\) is a clause resulting from collecting all the literals in \(C_1\) , minus the first occurrence of the pivot or its negation, and \(C_2\) , minus the first occurrence of the pivot or its negation, according to the policy above. If the resulting clause has a single literal, that literal itself is the result; if it has no literals, then the result is false; otherwise it’s an
OR
node of the resulting literals.Note that it may be the case that the pivot does not occur in the clauses. In this case the rule is not unsound, but it does not correspond to resolution but rather to a weakening of the clause that did not have a literal eliminated.
-
-
enumerator
CHAIN_RESOLUTION
-
Boolean – N-ary Resolution
\[\inferrule{C_1 \dots C_n \mid (pol_1 \dots pol_{n-1}), (L_1 \dots L_{n-1})}{C}\]where
-
let \(C_1 \dots C_n\) be nodes viewed as clauses, as defined above
-
let \(C_1 \diamond_{L,pol} C_2\) represent the resolution of \(C_1\) with \(C_2\) with pivot \(L\) and polarity \(pol\) , as defined above
-
let \(C_1' = C_1\) ,
-
for each \(i > 1\) , let \(C_i' = C_{i-1} \diamond_{L_{i-1}, pol_{i-1}} C_i'\)
Note the list of polarities and pivots are provided as s-expressions.
The result of the chain resolution is \(C = C_n'\)
-
-
enumerator
FACTORING
-
Boolean – Factoring
\[\inferrule{C_1 \mid -}{C_2}\]where \(C_2\) is the clause \(C_1\) , but every occurrence of a literal after its first occurrence is omitted.
-
enumerator
REORDERING
-
Boolean – Reordering
\[\inferrule{C_1 \mid C_2}{C_2}\]where the set representations of \(C_1\) and \(C_2\) are the same and the number of literals in \(C_2\) is the same of that of \(C_1\) .
-
enumerator
MACRO_RESOLUTION
-
Boolean – N-ary Resolution + Factoring + Reordering
\[\inferrule{C_1 \dots C_n \mid C, pol_1,L_1 \dots pol_{n-1},L_{n-1}}{C}\]where
-
let \(C_1 \dots C_n\) be nodes viewed as clauses, as defined in
RESOLUTION
-
let \(C_1 \diamond_{L,\mathit{pol}} C_2\) represent the resolution of \(C_1\) with \(C_2\) with pivot \(L\) and polarity \(pol\) , as defined in
RESOLUTION
-
let \(C_1'\) be equal, in its set representation, to \(C_1\) ,
-
for each \(i > 1\) , let \(C_i'\) be equal, in its set representation, to \(C_{i-1} \diamond_{L_{i-1},\mathit{pol}_{i-1}} C_i'\)
The result of the chain resolution is \(C\) , which is equal, in its set representation, to \(C_n'\)
-
-
enumerator
MACRO_RESOLUTION_TRUST
-
Boolean – N-ary Resolution + Factoring + Reordering unchecked
Same as
MACRO_RESOLUTION
, but not checked by the internal proof checker.
-
enumerator
SPLIT
-
Boolean – Split
\[\inferrule{- \mid F}{F \lor \neg F}\]
-
enumerator
EQ_RESOLVE
-
Boolean – Equality resolution
\[\inferrule{F_1, (F_1 = F_2) \mid -}{F_2}\]Note this can optionally be seen as a macro for
EQUIV_ELIM1
+RESOLUTION
.
-
enumerator
MODUS_PONENS
-
Boolean – Modus Ponens
\[\inferrule{F_1, (F_1 \rightarrow F_2) \mid -}{F_2}\]Note this can optionally be seen as a macro for
IMPLIES_ELIM
+RESOLUTION
.
-
enumerator
NOT_NOT_ELIM
-
Boolean – Double negation elimination
\[\inferrule{\neg (\neg F) \mid -}{F}\]
-
enumerator
CONTRA
-
Boolean – Contradiction
\[\inferrule{F, \neg F \mid -}{\bot}\]
-
enumerator
AND_ELIM
-
Boolean – And elimination
\[\inferrule{(F_1 \land \dots \land F_n) \mid i}{F_i}\]
-
enumerator
AND_INTRO
-
Boolean – And introduction
\[\inferrule{F_1 \dots F_n \mid -}{(F_1 \land \dots \land F_n)}\]
-
enumerator
NOT_OR_ELIM
-
Boolean – Not Or elimination
\[\inferrule{\neg(F_1 \lor \dots \lor F_n) \mid i}{\neg F_i}\]
-
enumerator
IMPLIES_ELIM
-
Boolean – Implication elimination
\[\inferrule{F_1 \rightarrow F_2 \mid -}{\neg F_1 \lor F_2}\]
-
enumerator
NOT_IMPLIES_ELIM1
-
Boolean – Not Implication elimination version 1
\[\inferrule{\neg(F_1 \rightarrow F_2) \mid -}{F_1}\]
-
enumerator
NOT_IMPLIES_ELIM2
-
Boolean – Not Implication elimination version 2
\[\inferrule{\neg(F_1 \rightarrow F_2) \mid -}{\neg F_2}\]
-
enumerator
EQUIV_ELIM1
-
Boolean – Equivalence elimination version 1
\[\inferrule{F_1 = F_2 \mid -}{\neg F_1 \lor F_2}\]
-
enumerator
EQUIV_ELIM2
-
Boolean – Equivalence elimination version 2
\[\inferrule{F_1 = F_2 \mid -}{F_1 \lor \neg F_2}\]
-
enumerator
NOT_EQUIV_ELIM1
-
Boolean – Not Equivalence elimination version 1
\[\inferrule{F_1 \neq F_2 \mid -}{F_1 \lor F_2}\]
-
enumerator
NOT_EQUIV_ELIM2
-
Boolean – Not Equivalence elimination version 2
\[\inferrule{F_1 \neq F_2 \mid -}{\neg F_1 \lor \neg F_2}\]
-
enumerator
XOR_ELIM1
-
Boolean – XOR elimination version 1
\[\inferrule{F_1 \xor F_2 \mid -}{F_1 \lor F_2}\]
-
enumerator
XOR_ELIM2
-
Boolean – XOR elimination version 2
\[\inferrule{F_1 \xor F_2 \mid -}{\neg F_1 \lor \neg F_2}\]
-
enumerator
NOT_XOR_ELIM1
-
Boolean – Not XOR elimination version 1
\[\inferrule{\neg(F_1 \xor F_2) \mid -}{F_1 \lor \neg F_2}\]
-
enumerator
NOT_XOR_ELIM2
-
Boolean – Not XOR elimination version 2
\[\inferrule{\neg(F_1 \xor F_2) \mid -}{\neg F_1 \lor F_2}\]
-
enumerator
ITE_ELIM1
-
Boolean – ITE elimination version 1
\[\inferrule{(\ite{C}{F_1}{F_2}) \mid -}{\neg C \lor F_1}\]
-
enumerator
ITE_ELIM2
-
Boolean – ITE elimination version 2
\[\inferrule{(\ite{C}{F_1}{F_2}) \mid -}{C \lor F_2}\]
-
enumerator
NOT_ITE_ELIM1
-
Boolean – Not ITE elimination version 1
\[\inferrule{\neg(\ite{C}{F_1}{F_2}) \mid -}{\neg C \lor \neg F_1}\]
-
enumerator
NOT_ITE_ELIM2
-
Boolean – Not ITE elimination version 2
\[\inferrule{\neg(\ite{C}{F_1}{F_2}) \mid -}{C \lor \neg F_2}\]
-
enumerator
NOT_AND
-
Boolean – De Morgan – Not And
\[\inferrule{\neg(F_1 \land \dots \land F_n) \mid -}{\neg F_1 \lor \dots \lor \neg F_n}\]
-
enumerator
CNF_AND_POS
-
Boolean – CNF – And Positive
\[\inferrule{- \mid (F_1 \land \dots \land F_n), i}{\neg (F_1 \land \dots \land F_n) \lor F_i}\]
-
enumerator
CNF_AND_NEG
-
Boolean – CNF – And Negative
\[\inferrule{- \mid (F_1 \land \dots \land F_n)}{(F_1 \land \dots \land F_n) \lor \neg F_1 \lor \dots \lor \neg F_n}\]
-
enumerator
CNF_OR_POS
-
Boolean – CNF – Or Positive
\[\inferrule{- \mid (F_1 \lor \dots \lor F_n)}{\neg(F_1 \lor \dots \lor F_n) \lor F_1 \lor \dots \lor F_n}\]
-
enumerator
CNF_OR_NEG
-
Boolean – CNF – Or Negative
\[\inferrule{- \mid (F_1 \lor \dots \lor F_n), i}{(F_1 \lor \dots \lor F_n) \lor \neg F_i}\]
-
enumerator
CNF_IMPLIES_POS
-
Boolean – CNF – Implies Positive
\[\inferrule{- \mid F_1 \rightarrow F_2}{\neg(F_1 \rightarrow F_2) \lor \neg F_1 \lor F_2}\]
-
enumerator
CNF_IMPLIES_NEG1
-
Boolean – CNF – Implies Negative 1
\[\inferrule{- \mid F_1 \rightarrow F_2}{(F_1 \rightarrow F_2) \lor F_1}\]
-
enumerator
CNF_IMPLIES_NEG2
-
Boolean – CNF – Implies Negative 2
\[\inferrule{- \mid F_1 \rightarrow F_2}{(F_1 \rightarrow F_2) \lor \neg F_2}\]
-
enumerator
CNF_EQUIV_POS1
-
Boolean – CNF – Equiv Positive 1
\[\inferrule{- \mid F_1 = F_2}{F_1 \neq F_2 \lor \neg F_1 \lor F_2}\]
-
enumerator
CNF_EQUIV_POS2
-
Boolean – CNF – Equiv Positive 2
\[\inferrule{- \mid F_1 = F_2}{F_1 \neq F_2 \lor F_1 \lor \neg F_2}\]
-
enumerator
CNF_EQUIV_NEG1
-
Boolean – CNF – Equiv Negative 1
\[\inferrule{- \mid F_1 = F_2}{(F_1 = F_2) \lor F_1 \lor F_2}\]
-
enumerator
CNF_EQUIV_NEG2
-
Boolean – CNF – Equiv Negative 2
\[\inferrule{- \mid F_1 = F_2}{(F_1 = F_2) \lor \neg F_1 \lor \neg F_2}\]
-
enumerator
CNF_XOR_POS1
-
Boolean – CNF – XOR Positive 1
\[\inferrule{- \mid F_1 \xor F_2}{\neg(F_1 \xor F_2) \lor F_1 \lor F_2}\]
-
enumerator
CNF_XOR_POS2
-
Boolean – CNF – XOR Positive 2
\[\inferrule{- \mid F_1 \xor F_2}{\neg(F_1 \xor F_2) \lor \neg F_1 \lor \neg F_2}\]
-
enumerator
CNF_XOR_NEG1
-
Boolean – CNF – XOR Negative 1
\[\inferrule{- \mid F_1 \xor F_2}{(F_1 \xor F_2) \lor \neg F_1 \lor F_2}\]
-
enumerator
CNF_XOR_NEG2
-
Boolean – CNF – XOR Negative 2
\[\inferrule{- \mid F_1 \xor F_2}{(F_1 \xor F_2) \lor F_1 \lor \neg F_2}\]
-
enumerator
CNF_ITE_POS1
-
Boolean – CNF – ITE Positive 1
\[\inferrule{- \mid (\ite{C}{F_1}{F_2})}{\neg(\ite{C}{F_1}{F_2}) \lor \neg C \lor F_1}\]
-
enumerator
CNF_ITE_POS2
-
Boolean – CNF – ITE Positive 2
\[\inferrule{- \mid (\ite{C}{F_1}{F_2})}{\neg(\ite{C}{F_1}{F_2}) \lor C \lor F_2}\]
-
enumerator
CNF_ITE_POS3
-
Boolean – CNF – ITE Positive 3
\[\inferrule{- \mid (\ite{C}{F_1}{F_2})}{\neg(\ite{C}{F_1}{F_2}) \lor F_1 \lor F_2}\]
-
enumerator
CNF_ITE_NEG1
-
Boolean – CNF – ITE Negative 1
\[\inferrule{- \mid (\ite{C}{F_1}{F_2})}{(\ite{C}{F_1}{F_2}) \lor \neg C \lor \neg F_1}\]
-
enumerator
CNF_ITE_NEG2
-
Boolean – CNF – ITE Negative 2
\[\inferrule{- \mid (\ite{C}{F_1}{F_2})}{(\ite{C}{F_1}{F_2}) \lor C \lor \neg F_2}\]
-
enumerator
CNF_ITE_NEG3
-
Boolean – CNF – ITE Negative 3
\[\inferrule{- \mid (\ite{C}{F_1}{F_2})}{(\ite{C}{F_1}{F_2}) \lor \neg F_1 \lor \neg F_2}\]
-
enumerator
REFL
-
Equality – Reflexivity
\[\inferrule{-\mid t}{t = t}\]
-
enumerator
SYMM
-
Equality – Symmetry
\[\inferrule{t_1 = t_2\mid -}{t_2 = t_1}\]or
\[\inferrule{t_1 \neq t_2\mid -}{t_2 \neq t_1}\]
-
enumerator
TRANS
-
Equality – Transitivity
\[\inferrule{t_1=t_2,\dots,t_{n-1}=t_n\mid -}{t_1 = t_n}\]
-
enumerator
CONG
-
Equality – Congruence
\[\inferrule{t_1=s_1,\dots,t_n=s_n\mid k, f?}{k(f?, t_1,\dots, t_n) = k(f?, s_1,\dots, s_n)}\]where \(k\) is the application kind. Notice that \(f\) must be provided iff \(k\) is a parameterized kind, e.g. cvc5::Kind::APPLY_UF . The actual node for \(k\) is constructible via
ProofRuleChecker::mkKindNode
. If \(k\) is a binder kind (e.g.cvc5::Kind::FORALL
) then \(f\) is a term of kindcvc5::Kind::VARIABLE_LIST
denoting the variables bound by both sides of the conclusion. This rule is used for kinds that have a fixed arity, such ascvc5::Kind::ITE
,cvc5::Kind::EQUAL
, and so on. It is also used forcvc5::Kind::APPLY_UF
where \(f\) must be provided. It is not used for equality betweencvc5::Kind::HO_APPLY
terms, which should use theHO_CONG
proof rule.
-
enumerator
NARY_CONG
-
Equality – N-ary Congruence
\[\inferrule{t_1=s_1,\dots,t_n=s_n\mid k}{k(t_1,\dots, t_n) = k(s_1,\dots, s_n)}\]where \(k\) is the application kind. The actual node for \(k\) is constructible via
ProofRuleChecker::mkKindNode
. This rule is used for kinds that have variadic arity, such ascvc5::Kind::AND
,cvc5::Kind::PLUS
and so on.
-
enumerator
TRUE_INTRO
-
Equality – True intro
\[\inferrule{F\mid -}{F = \top}\]
-
enumerator
TRUE_ELIM
-
Equality – True elim
\[\inferrule{F=\top\mid -}{F}\]
-
enumerator
FALSE_INTRO
-
Equality – False intro
\[\inferrule{\neg F\mid -}{F = \bot}\]
-
enumerator
FALSE_ELIM
-
Equality – False elim
\[\inferrule{F=\bot\mid -}{\neg F}\]
-
enumerator
HO_APP_ENCODE
-
Equality – Higher-order application encoding
\[\inferrule{-\mid t}{t=t'}\]where t’ is the higher-order application that is equivalent to t , as implemented by
uf::TheoryUfRewriter::getHoApplyForApplyUf
. For details see theory/uf/theory_uf_rewriter.hFor example, this rule concludes \(f(x,y) = @( @(f,x), y)\) , where \(@\) is the
HO_APPLY
kind.Note this rule can be treated as a
REFL
when appropriate in external proof formats.
-
enumerator
HO_CONG
-
Equality – Higher-order congruence
\[\inferrule{f=g, t_1=s_1,\dots,t_n=s_n\mid k}{k(f, t_1,\dots, t_n) = k(g, s_1,\dots, s_n)}\]Notice that this rule is only used when the application kind \(k\) is either cvc5::Kind::APPLY_UF or cvc5::Kind::HO_APPLY .
-
enumerator
ARRAYS_READ_OVER_WRITE
-
Arrays – Read over write
\[\inferrule{i_1 \neq i_2\mid \mathit{select}(\mathit{store}(a,i_1,e),i_2)} {\mathit{select}(\mathit{store}(a,i_1,e),i_2) = \mathit{select}(a,i_2)}\]
-
enumerator
ARRAYS_READ_OVER_WRITE_CONTRA
-
Arrays – Read over write, contrapositive
\[\inferrule{\mathit{select}(\mathit{store}(a,i_2,e),i_1) \neq \mathit{select}(a,i_1)\mid -}{i_1=i_2}\]
-
enumerator
ARRAYS_READ_OVER_WRITE_1
-
Arrays – Read over write 1
\[\inferrule{-\mid \mathit{select}(\mathit{store}(a,i,e),i)} {\mathit{select}(\mathit{store}(a,i,e),i)=e}\]
-
enumerator
ARRAYS_EXT
-
Arrays – Arrays extensionality
\[\inferrule{a \neq b\mid -} {\mathit{select}(a,k)\neq\mathit{select}(b,k)}\]where \(k\) is the \(\texttt{ARRAY_DEQ_DIFF}\) skolem for (a, b) .
-
enumerator
MACRO_BV_BITBLAST
-
Bit-vectors – (Macro) Bitblast
\[\inferrule{-\mid t}{t = \texttt{bitblast}(t)}\]where \(\texttt{bitblast}\) represents the result of the bit-blasted term as a bit-vector consisting of the output bits of the bit-blasted circuit representation of the term. Terms are bit-blasted according to the strategies defined in theory/bv/bitblast/bitblast_strategies_template.h .
-
enumerator
BV_BITBLAST_STEP
-
Bit-vectors – Bitblast bit-vector constant, variable, and terms
For constant and variables:
\[\inferrule{-\mid t}{t = \texttt{bitblast}(t)}\]For terms:
\[\inferrule{-\mid k(\texttt{bitblast}(t_1),\dots,\texttt{bitblast}(t_n))} {k(\texttt{bitblast}(t_1),\dots,\texttt{bitblast}(t_n)) = \texttt{bitblast}(t)}\]where \(t\) is \(k(t_1,\dots,t_n)\) .
-
enumerator
BV_EAGER_ATOM
-
Bit-vectors – Bit-vector eager atom
\[\inferrule{-\mid F}{F = F[0]}\]where \(F\) is of kind
BITVECTOR_EAGER_ATOM
.
-
enumerator
DT_UNIF
-
Datatypes – Unification
\[\inferrule{C(t_1,\dots,t_n)= C(s_1,\dots,s_n)\mid i}{t_1 = s_i}\]where \(C\) is a constructor.
-
enumerator
DT_SPLIT
-
Datatypes – Split
\[\inferrule{-\mid t}{\mathit{is}_{C_1}(t)\vee\cdots\vee\mathit{is}_{C_n}(t)}\]where \(C_1,\dots,C_n\) are all the constructors of the type of \(t\) .
-
enumerator
DT_CLASH
-
Datatypes – Clash
\[\inferruleSC{\mathit{is}_{C_i}(t), \mathit{is}_{C_j}(t)\mid -}{\bot} {if $i\neq j$}\]
-
enumerator
SKOLEM_INTRO
-
Quantifiers – Skolem introduction
\[\inferrule{-\mid k}{k = t}\]where \(t\) is the unpurified form of skolem \(k\) .
-
enumerator
SKOLEMIZE
-
Quantifiers – Skolemization
\[\inferrule{\neg (\forall x_1\dots x_n.\> F)\mid -}{\neg F\sigma}\]where \(\sigma\) maps \(x_1,\dots,x_n\) to their representative skolems, which are skolems \(k_1,\dots,k_n\) . For each \(k_i\) , its skolem identifier is
QUANTIFIERS_SKOLEMIZE
, and its indices are \((\forall x_1\dots x_n.\> F)\) and \(x_i\) .
-
enumerator
INSTANTIATE
-
Quantifiers – Instantiation
\[\inferrule{\forall x_1\dots x_n.\> F\mid (t_1 \dots t_n), (id\, (t)?)?} {F\{x_1\mapsto t_1,\dots,x_n\mapsto t_n\}}\]The list of terms to instantiate \((t_1 \dots t_n)\) is provided as an s-expression as the first argument. The optional argument \(id\) indicates the inference id that caused the instantiation. The term \(t\) indicates an additional term (e.g. the trigger) associated with the instantiation, which depends on the id. If the id has prefix
QUANTIFIERS_INST_E_MATCHING
, then \(t\) is the trigger that generated the instantiation.
-
enumerator
ALPHA_EQUIV
-
Quantifiers – Alpha equivalence
\[\inferruleSC{-\mid F, (y_1 \ldots y_n), (z_1,\dots, z_n)} {F = F\{y_1\mapsto z_1,\dots,y_n\mapsto z_n\}} {if $y_1,\dots,y_n, z_1,\dots,z_n$ are unique bound variables}\]Notice that this rule is correct only when \(z_1,\dots,z_n\) are not contained in \(FV(F) \setminus \{ y_1,\dots, y_n \}\) , where \(FV(\varphi)\) are the free variables of \(\varphi\) . The internal quantifiers proof checker does not currently check that this is the case.
-
enumerator
SETS_SINGLETON_INJ
-
Sets – Singleton injectivity
\[\inferrule{\mathit{set.singleton}(t) = \mathit{set.singleton}(s)\mid -}{t=s}\]
-
enumerator
SETS_EXT
-
Sets – Sets extensionality
\[\inferrule{a \neq b\mid -} {\mathit{set.member}(k,a)\neq\mathit{set.member}(k,b)}\]where \(k\) is the \(\texttt{SETS_DEQ_DIFF}\) skolem for (a, b) .
-
enumerator
CONCAT_EQ
-
Strings – Core rules – Concatenation equality
\[\inferrule{(t_1\cdot\ldots \cdot t_n \cdot t) = (t_1 \cdot\ldots \cdot t_n\cdot s)\mid b}{t = s}\]where \(\cdot\) stands for string concatenation and \(b\) indicates if the direction is reversed.
Notice that \(t\) or \(s\) may be empty, in which case they are implicit in the concatenation above. For example, if the premise is \(x\cdot z = x\) , then this rule, with argument \(\bot\) , concludes \(z = \epsilon\) .
Also note that constants are split, such that for \((\mathsf{'abc'} \cdot x) = (\mathsf{'a'} \cdot y)\) , this rule, with argument \(\bot\) , concludes \((\mathsf{'bc'} \cdot x) = y\) . This splitting is done only for constants such that
Word::splitConstant
returns non-null.
-
enumerator
CONCAT_UNIFY
-
Strings – Core rules – Concatenation unification
\[\inferrule{(t_1\cdot t_2) = (s_1 \cdot s_2),\, \mathit{len}(t_1) = \mathit{len}(s_1)\mid \bot}{t_1 = s_1}\]Alternatively for the reverse:
\[\inferrule{(t_1\cdot t_2) = (s_1 \cdot s_2),\, \mathit{len}(t_2) = \mathit{len}(s_2)\mid \top}{t_2 = s_2}\]
-
enumerator
CONCAT_CONFLICT
-
Strings – Core rules – Concatenation conflict
\[\inferrule{(c_1\cdot t) = (c_2 \cdot s)\mid b}{\bot}\]where \(b\) indicates if the direction is reversed, \(c_1,\,c_2\) are constants such that \(\texttt{Word::splitConstant}(c_1,c_2, \mathit{index},b)\) is null, in other words, neither is a prefix of the other. Note it may be the case that one side of the equality denotes the empty string.
This rule is used exclusively for strings.
-
enumerator
CONCAT_CONFLICT_DEQ
-
Strings – Core rules – Concatenation conflict for disequal characters
\[\inferrule{(t_1\cdot t) = (s_1 \cdot s), t_1 \neq s_1 \mid b}{\bot}\]where \(t_1\) and \(s_1\) are constants of length one, or otherwise one side of the equality is the empty sequence and \(t_1\) or \(s_1\) corresponding to that side is the empty sequence.
This rule is used exclusively for sequences.
-
enumerator
CONCAT_SPLIT
-
Strings – Core rules – Concatenation split
\[\inferruleSC{(t_1\cdot t_2) = (s_1 \cdot s_2),\, \mathit{len}(t_1) \neq \mathit{len}(s_1)\mid b}{((t_1 = s_1\cdot r) \vee (s_1 = t_1\cdot r)) \wedge r \neq \epsilon \wedge \mathit{len}(r)>0}{if $b=\bot$}\]where \(r\) is the purification skolem for \(\mathit{ite}( \mathit{len}(t_1) >= \mathit{len}(s_1), \mathit{suf}(t_1,\mathit{len}(s_1)), \mathit{suf}(s_1,\mathit{len}(t_1)))\) and \(\epsilon\) is the empty string (or sequence).
\[\inferruleSC{(t_1\cdot t_2) = (s_1 \cdot s_2),\, \mathit{len}(t_2) \neq \mathit{len}(s_2)\mid b}{((t_2 = r \cdot s_2) \vee (s_2 = r \cdot t_2)) \wedge r \neq \epsilon \wedge \mathit{len}(r)>0}{if $b=\top$}\]where \(r\) is the purification Skolem for \(\mathit{ite}( \mathit{len}(t_2) >= \mathit{len}(s_2), \mathit{pre}(t_2,\mathit{len}(t_2) - \mathit{len}(s_2)), \mathit{pre}(s_2,\mathit{len}(s_2) - \mathit{len}(t_2)))\) and \(\epsilon\) is the empty string (or sequence).
Above, \(\mathit{suf}(x,n)\) is shorthand for \(\mathit{substr}(x,n, \mathit{len}(x) - n)\) and \(\mathit{pre}(x,n)\) is shorthand for \(\mathit{substr}(x,0,n)\) .
-
enumerator
CONCAT_CSPLIT
-
Strings – Core rules – Concatenation split for constants
\[\inferrule{(t_1\cdot t_2) = (c \cdot s_2),\, \mathit{len}(t_1) \neq 0\mid \bot}{(t_1 = c\cdot r)}\]where \(r\) is the purification skolem for \(\mathit{suf}(t_1,1)\) .
Alternatively for the reverse:
\[\inferrule{(t_1\cdot t_2) = (s_1 \cdot c),\, \mathit{len}(t_2) \neq 0\mid \top}{(t_2 = r\cdot c)}\]where \(r\) is the purification skolem for \(\mathit{pre}(t_2,\mathit{len}(t_2) - 1)\) .
-
enumerator
CONCAT_LPROP
-
Strings – Core rules – Concatenation length propagation
\[\inferrule{(t_1\cdot t_2) = (s_1 \cdot s_2),\, \mathit{len}(t_1) > \mathit{len}(s_1)\mid \bot}{(t_1 = s_1\cdot r)}\]where \(r\) is the purification Skolem for \(\mathit{ite}( \mathit{len}(t_1) >= \mathit{len}(s_1), \mathit{suf}(t_1,\mathit{len}(s_1)), \mathit{suf}(s_1,\mathit{len}(t_1)))\) .
Alternatively for the reverse:
\[\inferrule{(t_1\cdot t_2) = (s_1 \cdot s_2),\, \mathit{len}(t_2) > \mathit{len}(s_2)\mid \top}{(t_2 = r \cdot s_2)}\]where \(r\) is the purification Skolem for \(\mathit{ite}( \mathit{len}(t_2) >= \mathit{len}(s_2), \mathit{pre}(t_2,\mathit{len}(t_2) - \mathit{len}(s_2)), \mathit{pre}(s_2,\mathit{len}(s_2) - \mathit{len}(t_2)))\)
-
enumerator
CONCAT_CPROP
-
Strings – Core rules – Concatenation constant propagation
\[\inferrule{(t_1\cdot w_1\cdot t_2) = (w_2 \cdot s),\, \mathit{len}(t_1) \neq 0\mid \bot}{(t_1 = t_3\cdot r)}\]where \(w_1,\,w_2\) are words, \(t_3\) is \(\mathit{pre}(w_2,p)\) , \(p\) is \(\texttt{Word::overlap}(\mathit{suf}(w_2,1), w_1)\) , and \(r\) is the purification skolem for \(\mathit{suf}(t_1,\mathit{len}(w_3))\) . Note that \(\mathit{suf}(w_2,p)\) is the largest suffix of \(\mathit{suf}(w_2,1)\) that can contain a prefix of \(w_1\) ; since \(t_1\) is non-empty, \(w_3\) must therefore be contained in \(t_1\) .
Alternatively for the reverse:
\[\inferrule{(t_1\cdot w_1\cdot t_2) = (s \cdot w_2),\, \mathit{len}(t_2) \neq 0\mid \top}{(t_2 = r\cdot t_3)}\]where \(w_1,\,w_2\) are words, \(t_3\) is \(\mathit{substr}(w_2, \mathit{len}(w_2) - p, p)\) , \(p\) is \(\texttt{Word::roverlap}(\mathit{pre}(w_2, \mathit{len}(w_2) - 1), w_1)\) , and \(r\) is the purification skolem for \(\mathit{pre}(t_2,\mathit{len}(t_2) - \mathit{len}(w_3))\) . Note that \(\mathit{pre}(w_2, \mathit{len}(w_2) - p)\) is the largest prefix of \(\mathit{pre}(w_2, \mathit{len}(w_2) - 1)\) that can contain a suffix of \(w_1\) ; since \(t_2\) is non-empty, \(w_3\) must therefore be contained in \(t_2\) .
-
enumerator
STRING_DECOMPOSE
-
Strings – Core rules – String decomposition
\[\inferrule{\mathit{len}(t) \geq n\mid \bot}{t = w_1\cdot w_2 \wedge \mathit{len}(w_1) = n}\]where \(w_1\) is the purification skolem for \(\mathit{pre}(t,n)\) and \(w_2\) is the purification skolem for \(\mathit{suf}(t,n)\) . Or alternatively for the reverse:
\[\inferrule{\mathit{len}(t) \geq n\mid \top}{t = w_1\cdot w_2 \wedge \mathit{len}(w_2) = n}\]where \(w_1\) is the purification skolem for \(\mathit{pre}(t,n)\) and \(w_2\) is the purification skolem for \(\mathit{suf}(t,n)\) .
-
enumerator
STRING_LENGTH_POS
-
Strings – Core rules – Length positive
\[\inferrule{-\mid t}{(\mathit{len}(t) = 0\wedge t= \epsilon)\vee \mathit{len}(t) > 0}\]
-
enumerator
STRING_LENGTH_NON_EMPTY
-
Strings – Core rules – Length non-empty
\[\inferrule{t\neq \epsilon\mid -}{\mathit{len}(t) \neq 0}\]
-
enumerator
STRING_REDUCTION
-
Strings – Extended functions – Reduction
\[\inferrule{-\mid t}{R\wedge t = w}\]where \(w\) is \(\texttt{StringsPreprocess::reduce}(t, R, \dots)\) . For details, see theory/strings/theory_strings_preprocess.h . In other words, \(R\) is the reduction predicate for extended term \(t\) , and \(w\) is the purification skolem for \(t\) .
Notice that the free variables of \(R\) are \(w\) and the free variables of \(t\) .
-
enumerator
STRING_EAGER_REDUCTION
-
Strings – Extended functions – Eager reduction
\[\inferrule{-\mid t}{R}\]where \(R\) is \(\texttt{TermRegistry::eagerReduce}(t)\) . For details, see theory/strings/term_registry.h .
-
enumerator
RE_INTER
-
Strings – Regular expressions – Intersection
\[\inferrule{t\in R_1,\,t\in R_2\mid -}{t\in \mathit{re.inter}(R_1,R_2)}\]
-
enumerator
RE_UNFOLD_POS
-
Strings – Regular expressions – Positive Unfold
\[\inferrule{t\in R\mid -}{F}\]where \(F\) corresponds to the one-step unfolding of the premise. This is implemented by \(\texttt{RegExpOpr::reduceRegExpPos}(t\in R)\) .
-
enumerator
RE_UNFOLD_NEG
-
Strings – Regular expressions – Negative Unfold
\[\inferrule{t \not \in \mathit{re}.\text{*}(R) \mid -}{t \neq \ \epsilon \ \wedge \forall L. L \leq 0 \vee \mathit{str.len}(t) < L \vee \mathit{pre}(t, L) \not \in R \vee \mathit{suf}(t, L) \not \in \mathit{re}.\text{*}(R)}\]Or alternatively for regular expression concatenation:
\[\inferrule{t \not \in \mathit{re}.\text{++}(R_1, \ldots, R_n)\mid -}{\forall L. L < 0 \vee \mathit{str.len}(t) < L \vee \mathit{pre}(t, L) \not \in R_1 \vee \mathit{suf}(t, L) \not \in \mathit{re}.\text{++}(R_2, \ldots, R_n)}\]Note that in either case the varaible \(L\) has type \(Int\) and name “@var.str_index” .
-
enumerator
RE_UNFOLD_NEG_CONCAT_FIXED
-
Strings – Regular expressions – Unfold negative concatenation, fixed
\[ \inferrule{t\not\in \mathit{re}.\text{re.++}(r_1, \ldots, r_n) \mid \bot}{ \mathit{pre}(t, L) \not \in r_1 \vee \mathit{suf}(t, L) \not \in \mathit{re}.\text{re.++}(r_2, \ldots, r_n)}\]where \(r_1\) has fixed length \(L\) .
or alternatively for the reverse:
\[\inferrule{t \not \in \mathit{re}.\text{re.++}(r_1, \ldots, r_n) \mid \top}{ \mathit{suf}(t, str.len(t) - L) \not \in r_n \vee \mathit{pre}(t, str.len(t) - L) \not \in \mathit{re}.\text{re.++}(r_1, \ldots, r_{n-1})}\]where \(r_n\) has fixed length \(L\) .
-
enumerator
STRING_CODE_INJ
-
Strings – Code points
\[\inferrule{-\mid t,s}{\mathit{to\_code}(t) = -1 \vee \mathit{to\_code}(t) \neq \mathit{to\_code}(s) \vee t = s}\]
-
enumerator
STRING_SEQ_UNIT_INJ
-
Strings – Sequence unit
\[\inferrule{\mathit{unit}(x) = \mathit{unit}(y)\mid -}{x = y}\]Also applies to the case where \(\mathit{unit}(y)\) is a constant sequence of length one.
-
enumerator
MACRO_STRING_INFERENCE
-
Strings – (Macro) String inference
\[\inferrule{?\mid F,\mathit{id},\mathit{isRev},\mathit{exp}}{F}\]used to bookkeep an inference that has not yet been converted via \(\texttt{strings::InferProofCons::convert}\) .
-
enumerator
MACRO_RE_ELIM
-
Strings – Regular expressions – Macro elimination
\[\inferrule{-\mid F,b}{F = F'}\]where \(F'\) is the result of eliminating regular expressions from \(F\) using the routine \(\texttt{strings::RegExpElimination::eliminate}(F, b)\) . Here, \(b\) is a Boolean indicating whether we are using aggressive eliminations. Notice this rule concludes \(F = F\) if no eliminations are performed for \(F\) .
We do not currently support elaboration of this macro.
-
enumerator
MACRO_ARITH_SCALE_SUM_UB
-
Arithmetic – Adding inequalities
An arithmetic literal is a term of the form \(p \diamond c\) where \(\diamond \in \{ <, \leq, =, \geq, > \}\) , \(p\) a polynomial and \(c\) a rational constant.
\[\inferrule{l_1 \dots l_n \mid k_1 \dots k_n}{t_1 \diamond t_2}\]where \(k_i \in \mathbb{R}, k_i \neq 0\) , \(\diamond\) is the fusion of the \(\diamond_i\) (flipping each if its \(k_i\) is negative) such that \(\diamond_i \in \{ <, \leq \}\) (this implies that lower bounds have negative \(k_i\) and upper bounds have positive \(k_i\) ), \(t_1\) is the sum of the scaled polynomials and \(t_2\) is the sum of the scaled constants:
\[ \begin{align}\begin{aligned}t_1 \colon= k_1 \cdot p_1 + \cdots + k_n \cdot p_n\\t_2 \colon= k_1 \cdot c_1 + \cdots + k_n \cdot c_n\end{aligned}\end{align} \]
-
enumerator
ARITH_SUM_UB
-
Arithmetic – Sum upper bounds
\[\inferrule{P_1 \dots P_n \mid -}{L \diamond R}\]where \(P_i\) has the form \(L_i \diamond_i R_i\) and \(\diamond_i \in \{<, \leq, =\}\) . Furthermore \(\diamond = <\) if \(\diamond_i = <\) for any \(i\) and \(\diamond = \leq\) otherwise, \(L = L_1 + \cdots + L_n\) and \(R = R_1 + \cdots + R_n\) .
-
enumerator
INT_TIGHT_UB
-
Arithmetic – Tighten strict integer upper bounds
\[\inferrule{i < c \mid -}{i \leq \lfloor c \rfloor}\]where \(i\) has integer type.
-
enumerator
INT_TIGHT_LB
-
Arithmetic – Tighten strict integer lower bounds
\[\inferrule{i > c \mid -}{i \geq \lceil c \rceil}\]where \(i\) has integer type.
-
enumerator
ARITH_TRICHOTOMY
-
Arithmetic – Trichotomy of the reals
\[\inferrule{A, B \mid -}{C}\]where \(\neg A, \neg B, C\) are \(x < c, x = c, x > c\) in some order. Note that \(\neg\) here denotes arithmetic negation, i.e., flipping \(\geq\) to \(<\) etc.
-
enumerator
ARITH_OP_ELIM_AXIOM
-
Arithmetic – Operator elimination
\[\inferrule{- \mid t}{\texttt{arith::OperatorElim::getAxiomFor(t)}}\]
-
enumerator
ARITH_POLY_NORM
-
Arithmetic – Polynomial normalization
\[\inferrule{- \mid t = s}{t = s}\]where \(\texttt{arith::PolyNorm::isArithPolyNorm(t, s)} = \top\) . This method normalizes polynomials \(s\) and \(t\) over arithmetic or bitvectors.
-
enumerator
ARITH_POLY_NORM_REL
-
Arithmetic – Polynomial normalization for relations
\[\inferrule{c_x \cdot (x_1 - x_2) = c_y \cdot (y_1 - y_2) \mid \diamond} {(x_1 \diamond x_2) = (y_1 \diamond y_2)}\]where \(\diamond \in \{<, \leq, =, \geq, >\}\) for arithmetic and \(\diamond \in \{=\}\) for bitvectors. \(c_x\) and :math:c_y` are scaling factors. For \(<, \leq, \geq, >\) , the scaling factors have the same sign. For bitvectors, they are set to \(1\) .
-
enumerator
ARITH_MULT_SIGN
-
Arithmetic – Sign inference
\[\inferrule{- \mid f_1 \dots f_k, m}{(f_1 \land \dots \land f_k) \rightarrow m \diamond 0}\]where \(f_1 \dots f_k\) are variables compared to zero (less, greater or not equal), \(m\) is a monomial from these variables and \(\diamond\) is the comparison (less or equal) that results from the signs of the variables. All variables with even exponent in \(m\) should be given as not equal to zero while all variables with odd exponent in \(m\) should be given as less or greater than zero.
-
enumerator
ARITH_MULT_POS
-
Arithmetic – Multiplication with positive factor
\[\inferrule{- \mid m, l \diamond r}{(m > 0 \land l \diamond r) \rightarrow m \cdot l \diamond m \cdot r}\]where \(\diamond\) is a relation symbol.
-
enumerator
ARITH_MULT_NEG
-
Arithmetic – Multiplication with negative factor
\[\inferrule{- \mid m, l \diamond r}{(m < 0 \land l \diamond r) \rightarrow m \cdot l \diamond_{inv} m \cdot r}\]where \(\diamond\) is a relation symbol and \(\diamond_{inv}\) the inverted relation symbol.
-
enumerator
ARITH_MULT_TANGENT
-
Arithmetic – Multiplication tangent plane
\[ \begin{align}\begin{aligned}\inferruleSC{- \mid x, y, a, b, \sigma}{(t \leq tplane) \leftrightarrow ((x \leq a \land y \geq b) \lor (x \geq a \land y \leq b))}{if $\sigma = -1$}\\\inferruleSC{- \mid x, y, a, b, \sigma}{(t \geq tplane) \leftrightarrow ((x \leq a \land y \leq b) \lor (x \geq a \land y \geq b))}{if $\sigma = 1$}\end{aligned}\end{align} \]where \(x,y\) are real terms (variables or extended terms), \(t = x \cdot y\) , \(a,b\) are real constants, \(\sigma \in \{ 1, -1\}\) and \(tplane := b \cdot x + a \cdot y - a \cdot b\) is the tangent plane of \(x \cdot y\) at \((a,b)\) .
-
enumerator
ARITH_TRANS_PI
-
Arithmetic – Transcendentals – Assert bounds on Pi
\[\inferrule{- \mid l, u}{\texttt{real.pi} \geq l \land \texttt{real.pi} \leq u}\]where \(l,u\) are valid lower and upper bounds on \(\pi\) .
-
enumerator
ARITH_TRANS_EXP_NEG
-
Arithmetic – Transcendentals – Exp at negative values
\[\inferrule{- \mid t}{(t < 0) \leftrightarrow (\exp(t) < 1)}\]
-
enumerator
ARITH_TRANS_EXP_POSITIVITY
-
Arithmetic – Transcendentals – Exp is always positive
\[\inferrule{- \mid t}{\exp(t) > 0}\]
-
enumerator
ARITH_TRANS_EXP_SUPER_LIN
-
Arithmetic – Transcendentals – Exp grows super-linearly for positive values
\[\inferrule{- \mid t}{t \leq 0 \lor \exp(t) > t+1}\]
-
enumerator
ARITH_TRANS_EXP_ZERO
-
Arithmetic – Transcendentals – Exp at zero
\[\inferrule{- \mid t}{(t=0) \leftrightarrow (\exp(t) = 1)}\]
-
enumerator
ARITH_TRANS_EXP_APPROX_ABOVE_NEG
-
Arithmetic – Transcendentals – Exp is approximated from above for negative values
\[\inferrule{- \mid d,t,l,u}{(t \geq l \land t \leq u) \rightarrow exp(t) \leq \texttt{secant}(\exp, l, u, t)}\]where \(d\) is an even positive number, \(t\) an arithmetic term and \(l,u\) are lower and upper bounds on \(t\) . Let \(p\) be the \(d\) ’th taylor polynomial at zero (also called the Maclaurin series) of the exponential function. \(\texttt{secant}(\exp, l, u, t)\) denotes the secant of \(p\) from \((l, \exp(l))\) to \((u, \exp(u))\) evaluated at \(t\) , calculated as follows:
\[\frac{p(l) - p(u)}{l - u} \cdot (t - l) + p(l)\]The lemma states that if \(t\) is between \(l\) and \(u\) , then \(\exp(t\) is below the secant of \(p\) from \(l\) to \(u\) .
-
enumerator
ARITH_TRANS_EXP_APPROX_ABOVE_POS
-
Arithmetic – Transcendentals – Exp is approximated from above for positive values
\[\inferrule{- \mid d,t,l,u}{(t \geq l \land t \leq u) \rightarrow exp(t) \leq \texttt{secant-pos}(\exp, l, u, t)}\]where \(d\) is an even positive number, \(t\) an arithmetic term and \(l,u\) are lower and upper bounds on \(t\) . Let \(p^*\) be a modification of the \(d\) ’th taylor polynomial at zero (also called the Maclaurin series) of the exponential function as follows where \(p(d-1)\) is the regular Maclaurin series of degree \(d-1\) :
\[p^* := p(d-1) \cdot \frac{1 + t^n}{n!}\]\(\texttt{secant-pos}(\exp, l, u, t)\) denotes the secant of \(p\) from \((l, \exp(l))\) to \((u, \exp(u))\) evaluated at \(t\) , calculated as follows:
\[\frac{p(l) - p(u)}{l - u} \cdot (t - l) + p(l)\]The lemma states that if \(t\) is between \(l\) and \(u\) , then \(\exp(t\) is below the secant of \(p\) from \(l\) to \(u\) .
-
enumerator
ARITH_TRANS_EXP_APPROX_BELOW
-
Arithmetic – Transcendentals – Exp is approximated from below
\[\inferrule{- \mid d,c,t}{t \geq c \rightarrow exp(t) \geq \texttt{maclaurin}(\exp, d, c)}\]where \(d\) is an odd positive number, \(t\) an arithmetic term and \(\texttt{maclaurin}(\exp, d, c)\) is the \(d\) ’th taylor polynomial at zero (also called the Maclaurin series) of the exponential function evaluated at \(c\) . The Maclaurin series for the exponential function is the following:
\[\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}\]
-
enumerator
ARITH_TRANS_SINE_BOUNDS
-
Arithmetic – Transcendentals – Sine is always between -1 and 1
\[\inferrule{- \mid t}{\sin(t) \leq 1 \land \sin(t) \geq -1}\]
-
enumerator
ARITH_TRANS_SINE_SHIFT
-
Arithmetic – Transcendentals – Sine is shifted to -pi…pi
\[\inferrule{- \mid x}{-\pi \leq y \leq \pi \land \sin(y) = \sin(x) \land (\ite{-\pi \leq x \leq \pi}{x = y}{x = y + 2 \pi s})}\]where \(x\) is the argument to sine, \(y\) is a new real skolem that is \(x\) shifted into \(-\pi \dots \pi\) and \(s\) is a new integer skolem that is the number of phases \(y\) is shifted. In particular, \(y\) is the
TRANSCENDENTAL_PURIFY_ARG
skolem for \(\sin(x)\) and \(s\) is theTRANSCENDENTAL_SINE_PHASE_SHIFT
skolem for \(x\) .
-
enumerator
ARITH_TRANS_SINE_SYMMETRY
-
Arithmetic – Transcendentals – Sine is symmetric with respect to negation of the argument
\[\inferrule{- \mid t}{\sin(t) - \sin(-t) = 0}\]
-
enumerator
ARITH_TRANS_SINE_TANGENT_ZERO
-
Arithmetic – Transcendentals – Sine is bounded by the tangent at zero
\[\inferrule{- \mid t}{(t > 0 \rightarrow \sin(t) < t) \land (t < 0 \rightarrow \sin(t) > t)} \]
-
enumerator
ARITH_TRANS_SINE_TANGENT_PI
-
Arithmetic – Transcendentals – Sine is bounded by the tangents at -pi and pi
\[\inferrule{- \mid t}{(t > -\pi \rightarrow \sin(t) > -\pi - t) \land (t < \pi \rightarrow \sin(t) < \pi - t)} \]
-
enumerator
ARITH_TRANS_SINE_APPROX_ABOVE_NEG
-
Arithmetic – Transcendentals – Sine is approximated from above for negative values
\[\inferrule{- \mid d,t,lb,ub,l,u}{(t \geq lb land t \leq ub) \rightarrow \sin(t) \leq \texttt{secant}(\sin, l, u, t)}\]where \(d\) is an even positive number, \(t\) an arithmetic term, \(lb,ub\) are symbolic lower and upper bounds on \(t\) (possibly containing \(\pi\) ) and \(l,u\) the evaluated lower and upper bounds on \(t\) . Let \(p\) be the \(d\) ’th taylor polynomial at zero (also called the Maclaurin series) of the sine function. \(\texttt{secant}(\sin, l, u, t)\) denotes the secant of \(p\) from \((l, \sin(l))\) to \((u, \sin(u))\) evaluated at \(t\) , calculated as follows:
\[\frac{p(l) - p(u)}{l - u} \cdot (t - l) + p(l)\]The lemma states that if \(t\) is between \(l\) and \(u\) , then \(\sin(t)\) is below the secant of \(p\) from \(l\) to \(u\) .
-
enumerator
ARITH_TRANS_SINE_APPROX_ABOVE_POS
-
Arithmetic – Transcendentals – Sine is approximated from above for positive values
\[\inferrule{- \mid d,t,c,lb,ub}{(t \geq lb land t \leq ub) \rightarrow \sin(t) \leq \texttt{upper}(\sin, c)}\]where \(d\) is an even positive number, \(t\) an arithmetic term, \(c\) an arithmetic constant and \(lb,ub\) are symbolic lower and upper bounds on \(t\) (possibly containing \(\pi\) ). Let \(p\) be the \(d\) ’th taylor polynomial at zero (also called the Maclaurin series) of the sine function. \(\texttt{upper}(\sin, c)\) denotes the upper bound on \(\sin(c)\) given by \(p\) and \(lb,up\) such that \(\sin(t)\) is the maximum of the sine function on \((lb,ub)\) .
-
enumerator
ARITH_TRANS_SINE_APPROX_BELOW_NEG
-
Arithmetic – Transcendentals – Sine is approximated from below for negative values
\[\inferrule{- \mid d,t,c,lb,ub}{(t \geq lb land t \leq ub) \rightarrow \sin(t) \geq \texttt{lower}(\sin, c)}\]where \(d\) is an even positive number, \(t\) an arithmetic term, \(c\) an arithmetic constant and \(lb,ub\) are symbolic lower and upper bounds on \(t\) (possibly containing \(\pi\) ). Let \(p\) be the \(d\) ’th taylor polynomial at zero (also called the Maclaurin series) of the sine function. \(\texttt{lower}(\sin, c)\) denotes the lower bound on \(\sin(c)\) given by \(p\) and \(lb,up\) such that \(\sin(t)\) is the minimum of the sine function on \((lb,ub)\) .
-
enumerator
ARITH_TRANS_SINE_APPROX_BELOW_POS
-
Arithmetic – Transcendentals – Sine is approximated from below for positive values
\[\inferrule{- \mid d,t,lb,ub,l,u}{(t \geq lb land t \leq ub) \rightarrow \sin(t) \geq \texttt{secant}(\sin, l, u, t)}\]where \(d\) is an even positive number, \(t\) an arithmetic term, \(lb,ub\) are symbolic lower and upper bounds on \(t\) (possibly containing \(\pi\) ) and \(l,u\) the evaluated lower and upper bounds on \(t\) . Let \(p\) be the \(d\) ’th taylor polynomial at zero (also called the Maclaurin series) of the sine function. \(\texttt{secant}(\sin, l, u, t)\) denotes the secant of \(p\) from \((l, \sin(l))\) to \((u, \sin(u))\) evaluated at \(t\) , calculated as follows:
\[\frac{p(l) - p(u)}{l - u} \cdot (t - l) + p(l)\]The lemma states that if \(t\) is between \(l\) and \(u\) , then \(\sin(t)\) is above the secant of \(p\) from \(l\) to \(u\) .
-
enumerator
LFSC_RULE
-
External – LFSC
Place holder for LFSC rules.
\[\inferrule{P_1, \dots, P_n\mid \texttt{id}, Q, A_1,\dots, A_m}{Q}\]Note that the premises and arguments are arbitrary. It’s expected that \(\texttt{id}\) refer to a proof rule in the external LFSC calculus.
-
enumerator
ALETHE_RULE
-
External – Alethe
Place holder for Alethe rules.
\[\inferrule{P_1, \dots, P_n\mid \texttt{id}, Q, Q', A_1,\dots, A_m}{Q}\]Note that the premises and arguments are arbitrary. It’s expected that \(\texttt{id}\) refer to a proof rule in the external Alethe calculus, and that \(Q'\) be the representation of Q to be printed by the Alethe printer.
-
enumerator
UNKNOWN
-
enumerator
ASSUME
-
std
::
ostream
&
cvc5
::
operator
<<
(
std
::
ostream
&
out
,
ProofRule
rule
)
-
Writes a proof rule name to a stream.
- Parameters :
-
-
out – The stream to write to
-
rule – The proof rule to write to the stream
-
- Returns :
-
The stream
-
std
::
string
std
::
to_string
(
cvc5
::
ProofRule
rule
)
-
Converts a proof rule to a string.
- Parameters :
-
rule – The proof rule
- Returns :
-
The name of the proof rule
-
enum
class
cvc5
::
ProofRewriteRule
-
This enumeration represents the rewrite rules used in a rewrite proof. Some of the rules are internal ad-hoc rewrites, while others are rewrites specified by the RARE DSL. This enumeration is used as the first argument to the
DSL_REWRITE
proof rule and theTHEORY_REWRITE
proof rule.Values:
-
enumerator
NONE
-
enumerator
DISTINCT_ELIM
-
Builtin – Distinct elimination
\[\texttt{distinct}(t_1, \ldots, tn) = \bigwedge_{i \neq j} t_i \neq t_j\]
-
enumerator
MACRO_BOOL_NNF_NORM
-
Booleans – Negation Normal Form with normalization
\[F = G\]where \(G\) is the result of applying negation normal form to \(F\) with additional normalizations, see TheoryBoolRewriter::computeNnfNorm.
-
enumerator
ARITH_DIV_BY_CONST_ELIM
-
Arith – Division by constant elimination
\[t / c = t * 1/c\]where \(c\) is a constant.
-
enumerator
MACRO_ARITH_STRING_PRED_ENTAIL
-
Arithmetic - strings predicate entailment
\[(= s t) = c\]\[(>= s t) = c\]where \(c\) is a Boolean constant. This macro is elaborated by applications of
EVALUATE
,ARITH_POLY_NORM
,ARITH_STRING_PRED_ENTAIL
,ARITH_STRING_PRED_SAFE_APPROX
, as well as other rewrites for normalizing arithmetic predicates.
-
enumerator
ARITH_STRING_PRED_ENTAIL
-
Arithmetic - strings predicate entailment
\[(>= n 0) = true\]Where \(n\) can be shown to be greater than or equal to \(0\) by reasoning about string length being positive and basic properties of addition and multiplication.
-
enumerator
ARITH_STRING_PRED_SAFE_APPROX
-
Arithmetic - strings predicate entailment
\[(>= n 0) = (>= m 0)\]Where \(m\) is a safe under-approximation of \(n\) , namely we have that \((>= n m)\) and \((>= m 0)\) .
In detail, subterms of \(n\) may be replaced with other terms to obtain \(m\) based on the reasoning described in the paper Reynolds et al, CAV 2019, “High-Level Abstractions for Simplifying Extended String Constraints in SMT”.
-
enumerator
BETA_REDUCE
-
Equality – Beta reduction
\[((\lambda x_1 \ldots x_n.\> t) \ t_1 \ldots t_n) = t\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}\]The right hand side of the equality in the conclusion is computed using standard substitution via
Node::substitute
.
-
enumerator
ARRAYS_EQ_RANGE_EXPAND
-
Arrays – Expansion of array range equality
\[\mathit{eqrange}(a,b,i,j)= \forall x.\> i \leq x \leq j \rightarrow \mathit{select}(a,x)=\mathit{select}(b,x)\]
-
enumerator
EXISTS_ELIM
-
Quantifiers – Exists elimination
\[\exists x_1\dots x_n.\> F = \neg \forall x_1\dots x_n.\> \neg F\]
-
enumerator
QUANT_UNUSED_VARS
-
Quantifiers – Unused variables
\[\forall X.\> F = \forall X_1.\> F\]where \(X_1\) is the subset of \(X\) that appear free in \(F\) .
-
enumerator
QUANT_MERGE_PRENEX
-
Quantifiers – Merge prenex
\[\forall X_1.\> \ldots \forall X_n.\> F = \forall X_1 \ldots X_n.\> F\]where \(X_1 \ldots X_n\) are lists of variables.
-
enumerator
QUANT_MINISCOPE
-
Quantifiers – Miniscoping
\[\forall X.\> F_1 \wedge \ldots \wedge F_n = (\forall X.\> F_1) \wedge \ldots \wedge (\forall X.\> F_n)\]
-
enumerator
MACRO_QUANT_PARTITION_CONNECTED_FV
-
Quantifiers – Macro connected free variable partitioning
\[\forall X.\> F_1 \vee \ldots \vee F_n = (\forall X_1.\> F_{1,1} \vee \ldots \vee F_{1,k_1}) \vee \ldots \vee (\forall X_m.\> F_{m,1} \vee \ldots \vee F_{m,k_m})\]where \(X_1, \ldots, X_m\) is a partition of \(X\) . This is determined by computing the connected components when considering two variables in \(X\) to be connected if they occur in the same \(F_i\) .
-
enumerator
DT_INST
-
Datatypes – Instantiation
\[\mathit{is}_C(t) = (t = C(\mathit{sel}_1(t),\dots,\mathit{sel}_n(t)))\]where \(C\) is the \(n^{\mathit{th}}\) constructor of the type of \(t\) , and \(\mathit{is}_C\) is the discriminator (tester) for \(C\) .
-
enumerator
DT_COLLAPSE_SELECTOR
-
Datatypes - collapse selector
\[s_i(c(t_1, \ldots, t_n)) = t_i\]where \(s_i\) is the \(i^{th}\) selector for constructor \(c\) .
-
enumerator
DT_COLLAPSE_TESTER
-
Datatypes - collapse tester
\[\mathit{is}_c(c(t_1, \ldots, t_n)) = true\]or alternatively
\[\mathit{is}_c(d(t_1, \ldots, t_n)) = false\]where \(c\) and \(d\) are distinct constructors.
-
enumerator
DT_COLLAPSE_TESTER_SINGLETON
-
Datatypes - collapse tester
\[\mathit{is}_c(t) = true\]where \(c\) is the only constructor of its associated datatype.
-
enumerator
DT_CONS_EQ
-
Datatypes - constructor equality
\[(c(t_1, \ldots, t_n) = c(s_1, \ldots, s_n)) = (t_1 = s_1 \wedge \ldots \wedge t_n = s_n)\]or alternatively
\[(c(t_1, \ldots, t_n) = d(s_1, \ldots, s_m)) = false\]where \(c\) and \(d\) are distinct constructors.
-
enumerator
BV_UMULO_ELIMINATE
-
Bitvectors - Unsigned multiplication overflow detection elimination
See M.Gok, M.J. Schulte, P.I. Balzola, “Efficient integer multiplication overflow detection circuits”, 2001. http://ieeexplore.ieee.org/document/987767
-
enumerator
BV_SMULO_ELIMINATE
-
Bitvectors - Unsigned multiplication overflow detection elimination
See M.Gok, M.J. Schulte, P.I. Balzola, “Efficient integer multiplication overflow detection circuits”, 2001. http://ieeexplore.ieee.org/document/987767
-
enumerator
BV_ADD_COMBINE_LIKE_TERMS
-
Bitvectors - Combine like terms during addition by counting terms
-
enumerator
BV_MULT_SIMPLIFY
-
Bitvectors - Extract negations from multiplicands
\[bvmul(bvneg(a),\ b,\ c) = bvneg(bvmul(a,\ b,\ c))\]
-
enumerator
BV_BITWISE_SLICING
-
Bitvectors - Extract continuous substrings of bitvectors
\[bvand(a,\ c) = concat(bvand(a[i_0:j_0],\ c_0) ... bvand(a[i_n:j_n],\ c_n))\]where c0,…, cn are maximally continuous substrings of 0 or 1 in the constant c
-
enumerator
RE_LOOP_ELIM
-
Strings - regular expression loop elimination
\[re.loop_{l,u}(R) = re.union(R^l, \ldots, R^u)\]where \(u \geq l\) .
-
enumerator
RE_INTER_UNION_INCLUSION
-
Strings - regular expression intersection/union inclusion
\[(re.inter\ R) = \mathit{re.inter}(\mathit{re.none}, R_0)\]where \(R\) is a list of regular expressions containing r_1 , re.comp(r_2) and the list \(R_0\) where r_2 is a superset of r_1 .
or alternatively:
\[\mathit{re.union}(R) = \mathit{re.union}(\mathit{re}.\text{*}(\mathit{re.allchar}),\ R_0)\]where \(R\) is a list of regular expressions containing r_1 , re.comp(r_2) and the list \(R_0\) , where r_1 is a superset of r_2 .
-
enumerator
STR_IN_RE_EVAL
-
Strings - regular expression membership evaluation
\[\mathit{str.in\_re}(s, R) = c\]where \(s\) is a constant string, \(R\) is a constant regular expression and \(c\) is true or false.
-
enumerator
STR_IN_RE_CONSUME
-
Strings - regular expression membership consume
\[\mathit{str.in_re}(s, R) = b\]where \(b\) is either \(false\) or the result of stripping entailed prefixes and suffixes off of \(s\) and \(R\) .
-
enumerator
STR_IN_RE_CONCAT_STAR_CHAR
-
Strings - string in regular expression concatenation star character
\[\begin{split}\mathit{str.in\_re}(\mathit{str}.\text{++}(s_1, \ldots, s_n), \mathit{re}.\text{*}(R)) =\\ \mathit{str.in\_re}(s_1, \mathit{re}.\text{*}(R)) \wedge \ldots \wedge \mathit{str.in\_re}(s_n, \mathit{re}.\text{*}(R))\end{split}\]where all strings in \(R\) have length one.
-
enumerator
STR_IN_RE_SIGMA
-
Strings - string in regular expression sigma
\[\mathit{str.in\_re}(s, \mathit{re}.\text{++}(\mathit{re.allchar}, \ldots, \mathit{re.allchar})) = (\mathit{str.len}(s) = n)\]or alternatively:
\[\mathit{str.in\_re}(s, \mathit{re}.\text{++}(\mathit{re.allchar}, \ldots, \mathit{re.allchar}, \mathit{re}.\text{*}(\mathit{re.allchar}))) = (\mathit{str.len}(s) \ge n)\]
-
enumerator
STR_IN_RE_SIGMA_STAR
-
Strings - string in regular expression sigma star
\[\mathit{str.in\_re}(s, \mathit{re}.\text{*}(\mathit{re}.\text{++}(\mathit{re.allchar}, \ldots, \mathit{re.allchar}))) = (\mathit{str.len}(s) \ \% \ n = 0)\]where \(n\) is the number of \(\mathit{re.allchar}\) arguments to \(\mathit{re}.\text{++}\) .
-
enumerator
MACRO_SUBSTR_STRIP_SYM_LENGTH
-
Strings - strings substring strip symbolic length
\[str.substr(s, n, m) = t\]where \(t\) is obtained by fully or partially stripping components of \(s\) based on \(n\) and \(m\) .
-
enumerator
SETS_IS_EMPTY_EVAL
-
Sets - empty tester evaluation
\[\mathit{sets.is\_empty}(\epsilon) = \top\]where \(\epsilon\) is the empty set, or alternatively:
\[\mathit{sets.is\_empty}(c) = \bot\]where \(c\) is a constant set that is not the empty set.
-
enumerator
ARITH_PLUS_ZERO
-
Auto-generated from RARE rule arith-plus-zero
-
enumerator
ARITH_MUL_ONE
-
Auto-generated from RARE rule arith-mul-one
-
enumerator
ARITH_MUL_ZERO
-
Auto-generated from RARE rule arith-mul-zero
-
enumerator
ARITH_DIV_TOTAL
-
Auto-generated from RARE rule arith-div-total
-
enumerator
ARITH_INT_DIV_TOTAL
-
Auto-generated from RARE rule arith-int-div-total
-
enumerator
ARITH_INT_DIV_TOTAL_ONE
-
Auto-generated from RARE rule arith-int-div-total-one
-
enumerator
ARITH_INT_DIV_TOTAL_ZERO
-
Auto-generated from RARE rule arith-int-div-total-zero
-
enumerator
ARITH_INT_MOD_TOTAL
-
Auto-generated from RARE rule arith-int-mod-total
-
enumerator
ARITH_INT_MOD_TOTAL_ONE
-
Auto-generated from RARE rule arith-int-mod-total-one
-
enumerator
ARITH_INT_MOD_TOTAL_ZERO
-
Auto-generated from RARE rule arith-int-mod-total-zero
-
enumerator
ARITH_NEG_NEG_ONE
-
Auto-generated from RARE rule arith-neg-neg-one
-
enumerator
ARITH_ELIM_UMINUS
-
Auto-generated from RARE rule arith-elim-uminus
-
enumerator
ARITH_ELIM_MINUS
-
Auto-generated from RARE rule arith-elim-minus
-
enumerator
ARITH_ELIM_GT
-
Auto-generated from RARE rule arith-elim-gt
-
enumerator
ARITH_ELIM_LT
-
Auto-generated from RARE rule arith-elim-lt
-
enumerator
ARITH_ELIM_INT_GT
-
Auto-generated from RARE rule arith-elim-int-gt
-
enumerator
ARITH_ELIM_INT_LT
-
Auto-generated from RARE rule arith-elim-int-lt
-
enumerator
ARITH_ELIM_LEQ
-
Auto-generated from RARE rule arith-elim-leq
-
enumerator
ARITH_LEQ_NORM
-
Auto-generated from RARE rule arith-leq-norm
-
enumerator
ARITH_GEQ_TIGHTEN
-
Auto-generated from RARE rule arith-geq-tighten
-
enumerator
ARITH_GEQ_NORM1
-
Auto-generated from RARE rule arith-geq-norm1
-
enumerator
ARITH_GEQ_NORM2
-
Auto-generated from RARE rule arith-geq-norm2
-
enumerator
ARITH_REFL_LEQ
-
Auto-generated from RARE rule arith-refl-leq
-
enumerator
ARITH_REFL_LT
-
Auto-generated from RARE rule arith-refl-lt
-
enumerator
ARITH_REFL_GEQ
-
Auto-generated from RARE rule arith-refl-geq
-
enumerator
ARITH_REFL_GT
-
Auto-generated from RARE rule arith-refl-gt
-
enumerator
ARITH_REAL_EQ_ELIM
-
Auto-generated from RARE rule arith-real-eq-elim
-
enumerator
ARITH_INT_EQ_ELIM
-
Auto-generated from RARE rule arith-int-eq-elim
-
enumerator
ARITH_PLUS_FLATTEN
-
Auto-generated from RARE rule arith-plus-flatten
-
enumerator
ARITH_MULT_FLATTEN
-
Auto-generated from RARE rule arith-mult-flatten
-
enumerator
ARITH_MULT_DIST
-
Auto-generated from RARE rule arith-mult-dist
-
enumerator
ARITH_PLUS_CANCEL1
-
Auto-generated from RARE rule arith-plus-cancel1
-
enumerator
ARITH_PLUS_CANCEL2
-
Auto-generated from RARE rule arith-plus-cancel2
-
enumerator
ARITH_ABS_ELIM
-
Auto-generated from RARE rule arith-abs-elim
-
enumerator
ARITH_TO_REAL_ELIM
-
Auto-generated from RARE rule arith-to-real-elim
-
enumerator
ARITH_TO_INT_ELIM_TO_REAL
-
Auto-generated from RARE rule arith-to-int-elim-to-real
-
enumerator
ARITH_DIV_ELIM_TO_REAL1
-
Auto-generated from RARE rule arith-div-elim-to-real1
-
enumerator
ARITH_DIV_ELIM_TO_REAL2
-
Auto-generated from RARE rule arith-div-elim-to-real2
-
enumerator
ARRAY_READ_OVER_WRITE
-
Auto-generated from RARE rule array-read-over-write
-
enumerator
ARRAY_READ_OVER_WRITE2
-
Auto-generated from RARE rule array-read-over-write2
-
enumerator
ARRAY_STORE_OVERWRITE
-
Auto-generated from RARE rule array-store-overwrite
-
enumerator
ARRAY_STORE_SELF
-
Auto-generated from RARE rule array-store-self
-
enumerator
BOOL_DOUBLE_NOT_ELIM
-
Auto-generated from RARE rule bool-double-not-elim
-
enumerator
BOOL_NOT_TRUE
-
Auto-generated from RARE rule bool-not-true
-
enumerator
BOOL_NOT_FALSE
-
Auto-generated from RARE rule bool-not-false
-
enumerator
BOOL_EQ_TRUE
-
Auto-generated from RARE rule bool-eq-true
-
enumerator
BOOL_EQ_FALSE
-
Auto-generated from RARE rule bool-eq-false
-
enumerator
BOOL_EQ_NREFL
-
Auto-generated from RARE rule bool-eq-nrefl
-
enumerator
BOOL_IMPL_FALSE1
-
Auto-generated from RARE rule bool-impl-false1
-
enumerator
BOOL_IMPL_FALSE2
-
Auto-generated from RARE rule bool-impl-false2
-
enumerator
BOOL_IMPL_TRUE1
-
Auto-generated from RARE rule bool-impl-true1
-
enumerator
BOOL_IMPL_TRUE2
-
Auto-generated from RARE rule bool-impl-true2
-
enumerator
BOOL_IMPL_ELIM
-
Auto-generated from RARE rule bool-impl-elim
-
enumerator
BOOL_OR_TRUE
-
Auto-generated from RARE rule bool-or-true
-
enumerator
BOOL_OR_FALSE
-
Auto-generated from RARE rule bool-or-false
-
enumerator
BOOL_OR_FLATTEN
-
Auto-generated from RARE rule bool-or-flatten
-
enumerator
BOOL_OR_DUP
-
Auto-generated from RARE rule bool-or-dup
-
enumerator
BOOL_AND_TRUE
-
Auto-generated from RARE rule bool-and-true
-
enumerator
BOOL_AND_FALSE
-
Auto-generated from RARE rule bool-and-false
-
enumerator
BOOL_AND_FLATTEN
-
Auto-generated from RARE rule bool-and-flatten
-
enumerator
BOOL_AND_DUP
-
Auto-generated from RARE rule bool-and-dup
-
enumerator
BOOL_AND_CONF
-
Auto-generated from RARE rule bool-and-conf
-
enumerator
BOOL_OR_TAUT
-
Auto-generated from RARE rule bool-or-taut
-
enumerator
BOOL_OR_DE_MORGAN
-
Auto-generated from RARE rule bool-or-de-morgan
-
enumerator
BOOL_IMPLIES_DE_MORGAN
-
Auto-generated from RARE rule bool-implies-de-morgan
-
enumerator
BOOL_AND_DE_MORGAN
-
Auto-generated from RARE rule bool-and-de-morgan
-
enumerator
BOOL_XOR_REFL
-
Auto-generated from RARE rule bool-xor-refl
-
enumerator
BOOL_XOR_NREFL
-
Auto-generated from RARE rule bool-xor-nrefl
-
enumerator
BOOL_XOR_FALSE
-
Auto-generated from RARE rule bool-xor-false
-
enumerator
BOOL_XOR_TRUE
-
Auto-generated from RARE rule bool-xor-true
-
enumerator
BOOL_XOR_COMM
-
Auto-generated from RARE rule bool-xor-comm
-
enumerator
BOOL_XOR_ELIM
-
Auto-generated from RARE rule bool-xor-elim
-
enumerator
BOOL_NOT_XOR_ELIM
-
Auto-generated from RARE rule bool-not-xor-elim
-
enumerator
BOOL_NOT_EQ_ELIM
-
Auto-generated from RARE rule bool-not-eq-elim
-
enumerator
ITE_NEG_BRANCH
-
Auto-generated from RARE rule ite-neg-branch
-
enumerator
ITE_THEN_TRUE
-
Auto-generated from RARE rule ite-then-true
-
enumerator
ITE_ELSE_FALSE
-
Auto-generated from RARE rule ite-else-false
-
enumerator
ITE_THEN_FALSE
-
Auto-generated from RARE rule ite-then-false
-
enumerator
ITE_ELSE_TRUE
-
Auto-generated from RARE rule ite-else-true
-
enumerator
ITE_THEN_LOOKAHEAD_SELF
-
Auto-generated from RARE rule ite-then-lookahead-self
-
enumerator
ITE_ELSE_LOOKAHEAD_SELF
-
Auto-generated from RARE rule ite-else-lookahead-self
-
enumerator
BOOL_NOT_ITE_ELIM
-
Auto-generated from RARE rule bool-not-ite-elim
-
enumerator
ITE_TRUE_COND
-
Auto-generated from RARE rule ite-true-cond
-
enumerator
ITE_FALSE_COND
-
Auto-generated from RARE rule ite-false-cond
-
enumerator
ITE_NOT_COND
-
Auto-generated from RARE rule ite-not-cond
-
enumerator
ITE_EQ_BRANCH
-
Auto-generated from RARE rule ite-eq-branch
-
enumerator
ITE_THEN_LOOKAHEAD
-
Auto-generated from RARE rule ite-then-lookahead
-
enumerator
ITE_ELSE_LOOKAHEAD
-
Auto-generated from RARE rule ite-else-lookahead
-
enumerator
ITE_THEN_NEG_LOOKAHEAD
-
Auto-generated from RARE rule ite-then-neg-lookahead
-
enumerator
ITE_ELSE_NEG_LOOKAHEAD
-
Auto-generated from RARE rule ite-else-neg-lookahead
-
enumerator
BV_CONCAT_FLATTEN
-
Auto-generated from RARE rule bv-concat-flatten
-
enumerator
BV_CONCAT_EXTRACT_MERGE
-
Auto-generated from RARE rule bv-concat-extract-merge
-
enumerator
BV_EXTRACT_EXTRACT
-
Auto-generated from RARE rule bv-extract-extract
-
enumerator
BV_EXTRACT_WHOLE
-
Auto-generated from RARE rule bv-extract-whole
-
enumerator
BV_EXTRACT_CONCAT_1
-
Auto-generated from RARE rule bv-extract-concat-1
-
enumerator
BV_EXTRACT_CONCAT_2
-
Auto-generated from RARE rule bv-extract-concat-2
-
enumerator
BV_EXTRACT_CONCAT_3
-
Auto-generated from RARE rule bv-extract-concat-3
-
enumerator
BV_EXTRACT_CONCAT_4
-
Auto-generated from RARE rule bv-extract-concat-4
-
enumerator
BV_EXTRACT_BITWISE_AND
-
Auto-generated from RARE rule bv-extract-bitwise-and
-
enumerator
BV_EXTRACT_BITWISE_OR
-
Auto-generated from RARE rule bv-extract-bitwise-or
-
enumerator
BV_EXTRACT_BITWISE_XOR
-
Auto-generated from RARE rule bv-extract-bitwise-xor
-
enumerator
BV_EXTRACT_NOT
-
Auto-generated from RARE rule bv-extract-not
-
enumerator
BV_EXTRACT_SIGN_EXTEND_1
-
Auto-generated from RARE rule bv-extract-sign-extend-1
-
enumerator
BV_EXTRACT_SIGN_EXTEND_2
-
Auto-generated from RARE rule bv-extract-sign-extend-2
-
enumerator
BV_EXTRACT_SIGN_EXTEND_3
-
Auto-generated from RARE rule bv-extract-sign-extend-3
-
enumerator
BV_NEG_MULT
-
Auto-generated from RARE rule bv-neg-mult
-
enumerator
BV_NEG_ADD
-
Auto-generated from RARE rule bv-neg-add
-
enumerator
BV_MULT_DISTRIB_CONST_NEG
-
Auto-generated from RARE rule bv-mult-distrib-const-neg
-
enumerator
BV_MULT_DISTRIB_CONST_ADD
-
Auto-generated from RARE rule bv-mult-distrib-const-add
-
enumerator
BV_MULT_DISTRIB_CONST_SUB
-
Auto-generated from RARE rule bv-mult-distrib-const-sub
-
enumerator
BV_MULT_DISTRIB_1
-
Auto-generated from RARE rule bv-mult-distrib-1
-
enumerator
BV_MULT_DISTRIB_2
-
Auto-generated from RARE rule bv-mult-distrib-2
-
enumerator
BV_NOT_XOR
-
Auto-generated from RARE rule bv-not-xor
-
enumerator
BV_AND_SIMPLIFY_1
-
Auto-generated from RARE rule bv-and-simplify-1
-
enumerator
BV_AND_SIMPLIFY_2
-
Auto-generated from RARE rule bv-and-simplify-2
-
enumerator
BV_OR_SIMPLIFY_1
-
Auto-generated from RARE rule bv-or-simplify-1
-
enumerator
BV_OR_SIMPLIFY_2
-
Auto-generated from RARE rule bv-or-simplify-2
-
enumerator
BV_XOR_SIMPLIFY_1
-
Auto-generated from RARE rule bv-xor-simplify-1
-
enumerator
BV_XOR_SIMPLIFY_2
-
Auto-generated from RARE rule bv-xor-simplify-2
-
enumerator
BV_XOR_SIMPLIFY_3
-
Auto-generated from RARE rule bv-xor-simplify-3
-
enumerator
BV_ULT_ADD_ONE
-
Auto-generated from RARE rule bv-ult-add-one
-
enumerator
BV_CONCAT_TO_MULT
-
Auto-generated from RARE rule bv-concat-to-mult
-
enumerator
BV_MULT_SLT_MULT_1
-
Auto-generated from RARE rule bv-mult-slt-mult-1
-
enumerator
BV_MULT_SLT_MULT_2
-
Auto-generated from RARE rule bv-mult-slt-mult-2
-
enumerator
BV_COMMUTATIVE_AND
-
Auto-generated from RARE rule bv-commutative-and
-
enumerator
BV_COMMUTATIVE_OR
-
Auto-generated from RARE rule bv-commutative-or
-
enumerator
BV_COMMUTATIVE_XOR
-
Auto-generated from RARE rule bv-commutative-xor
-
enumerator
BV_COMMUTATIVE_MUL
-
Auto-generated from RARE rule bv-commutative-mul
-
enumerator
BV_OR_ZERO
-
Auto-generated from RARE rule bv-or-zero
-
enumerator
BV_MUL_ONE
-
Auto-generated from RARE rule bv-mul-one
-
enumerator
BV_MUL_ZERO
-
Auto-generated from RARE rule bv-mul-zero
-
enumerator
BV_ADD_ZERO
-
Auto-generated from RARE rule bv-add-zero
-
enumerator
BV_ADD_TWO
-
Auto-generated from RARE rule bv-add-two
-
enumerator
BV_ZERO_EXTEND_ELIMINATE_0
-
Auto-generated from RARE rule bv-zero-extend-eliminate-0
-
enumerator
BV_SIGN_EXTEND_ELIMINATE_0
-
Auto-generated from RARE rule bv-sign-extend-eliminate-0
-
enumerator
BV_NOT_NEQ
-
Auto-generated from RARE rule bv-not-neq
-
enumerator
BV_ULT_ONES
-
Auto-generated from RARE rule bv-ult-ones
-
enumerator
BV_OR_FLATTEN
-
Auto-generated from RARE rule bv-or-flatten
-
enumerator
BV_XOR_FLATTEN
-
Auto-generated from RARE rule bv-xor-flatten
-
enumerator
BV_AND_FLATTEN
-
Auto-generated from RARE rule bv-and-flatten
-
enumerator
BV_MUL_FLATTEN
-
Auto-generated from RARE rule bv-mul-flatten
-
enumerator
BV_CONCAT_MERGE_CONST
-
Auto-generated from RARE rule bv-concat-merge-const
-
enumerator
BV_COMMUTATIVE_ADD
-
Auto-generated from RARE rule bv-commutative-add
-
enumerator
BV_NEG_SUB
-
Auto-generated from RARE rule bv-neg-sub
-
enumerator
BV_NEG_IDEMP
-
Auto-generated from RARE rule bv-neg-idemp
-
enumerator
BV_SUB_ELIMINATE
-
Auto-generated from RARE rule bv-sub-eliminate
-
enumerator
BV_UGT_ELIMINATE
-
Auto-generated from RARE rule bv-ugt-eliminate
-
enumerator
BV_UGE_ELIMINATE
-
Auto-generated from RARE rule bv-uge-eliminate
-
enumerator
BV_SGT_ELIMINATE
-
Auto-generated from RARE rule bv-sgt-eliminate
-
enumerator
BV_SGE_ELIMINATE
-
Auto-generated from RARE rule bv-sge-eliminate
-
enumerator
BV_SLT_ELIMINATE
-
Auto-generated from RARE rule bv-slt-eliminate
-
enumerator
BV_SLE_ELIMINATE
-
Auto-generated from RARE rule bv-sle-eliminate
-
enumerator
BV_REDOR_ELIMINATE
-
Auto-generated from RARE rule bv-redor-eliminate
-
enumerator
BV_REDAND_ELIMINATE
-
Auto-generated from RARE rule bv-redand-eliminate
-
enumerator
BV_ULE_ELIMINATE
-
Auto-generated from RARE rule bv-ule-eliminate
-
enumerator
BV_COMP_ELIMINATE
-
Auto-generated from RARE rule bv-comp-eliminate
-
enumerator
BV_REPEAT_ELIMINATE_1
-
Auto-generated from RARE rule bv-repeat-eliminate-1
-
enumerator
BV_REPEAT_ELIMINATE_2
-
Auto-generated from RARE rule bv-repeat-eliminate-2
-
enumerator
BV_ROTATE_LEFT_ELIMINATE_1
-
Auto-generated from RARE rule bv-rotate-left-eliminate-1
-
enumerator
BV_ROTATE_LEFT_ELIMINATE_2
-
Auto-generated from RARE rule bv-rotate-left-eliminate-2
-
enumerator
BV_ROTATE_RIGHT_ELIMINATE_1
-
Auto-generated from RARE rule bv-rotate-right-eliminate-1
-
enumerator
BV_ROTATE_RIGHT_ELIMINATE_2
-
Auto-generated from RARE rule bv-rotate-right-eliminate-2
-
enumerator
BV_NAND_ELIMINATE
-
Auto-generated from RARE rule bv-nand-eliminate
-
enumerator
BV_NOR_ELIMINATE
-
Auto-generated from RARE rule bv-nor-eliminate
-
enumerator
BV_XNOR_ELIMINATE
-
Auto-generated from RARE rule bv-xnor-eliminate
-
enumerator
BV_SDIV_ELIMINATE
-
Auto-generated from RARE rule bv-sdiv-eliminate
-
enumerator
BV_SDIV_ELIMINATE_FEWER_BITWISE_OPS
-
Auto-generated from RARE rule bv-sdiv-eliminate-fewer-bitwise-ops
-
enumerator
BV_ZERO_EXTEND_ELIMINATE
-
Auto-generated from RARE rule bv-zero-extend-eliminate
-
enumerator
BV_SIGN_EXTEND_ELIMINATE
-
Auto-generated from RARE rule bv-sign-extend-eliminate
-
enumerator
BV_UADDO_ELIMINATE
-
Auto-generated from RARE rule bv-uaddo-eliminate
-
enumerator
BV_SADDO_ELIMINATE
-
Auto-generated from RARE rule bv-saddo-eliminate
-
enumerator
BV_SDIVO_ELIMINATE
-
Auto-generated from RARE rule bv-sdivo-eliminate
-
enumerator
BV_SMOD_ELIMINATE
-
Auto-generated from RARE rule bv-smod-eliminate
-
enumerator
BV_SMOD_ELIMINATE_FEWER_BITWISE_OPS
-
Auto-generated from RARE rule bv-smod-eliminate-fewer-bitwise-ops
-
enumerator
BV_SREM_ELIMINATE
-
Auto-generated from RARE rule bv-srem-eliminate
-
enumerator
BV_SREM_ELIMINATE_FEWER_BITWISE_OPS
-
Auto-generated from RARE rule bv-srem-eliminate-fewer-bitwise-ops
-
enumerator
BV_USUBO_ELIMINATE
-
Auto-generated from RARE rule bv-usubo-eliminate
-
enumerator
BV_SSUBO_ELIMINATE
-
Auto-generated from RARE rule bv-ssubo-eliminate
-
enumerator
BV_ITE_EQUAL_CHILDREN
-
Auto-generated from RARE rule bv-ite-equal-children
-
enumerator
BV_ITE_CONST_CHILDREN_1
-
Auto-generated from RARE rule bv-ite-const-children-1
-
enumerator
BV_ITE_CONST_CHILDREN_2
-
Auto-generated from RARE rule bv-ite-const-children-2
-
enumerator
BV_ITE_EQUAL_COND_1
-
Auto-generated from RARE rule bv-ite-equal-cond-1
-
enumerator
BV_ITE_EQUAL_COND_2
-
Auto-generated from RARE rule bv-ite-equal-cond-2
-
enumerator
BV_ITE_EQUAL_COND_3
-
Auto-generated from RARE rule bv-ite-equal-cond-3
-
enumerator
BV_ITE_MERGE_THEN_IF
-
Auto-generated from RARE rule bv-ite-merge-then-if
-
enumerator
BV_ITE_MERGE_ELSE_IF
-
Auto-generated from RARE rule bv-ite-merge-else-if
-
enumerator
BV_ITE_MERGE_THEN_ELSE
-
Auto-generated from RARE rule bv-ite-merge-then-else
-
enumerator
BV_ITE_MERGE_ELSE_ELSE
-
Auto-generated from RARE rule bv-ite-merge-else-else
-
enumerator
BV_SHL_BY_CONST_0
-
Auto-generated from RARE rule bv-shl-by-const-0
-
enumerator
BV_SHL_BY_CONST_1
-
Auto-generated from RARE rule bv-shl-by-const-1
-
enumerator
BV_SHL_BY_CONST_2
-
Auto-generated from RARE rule bv-shl-by-const-2
-
enumerator
BV_LSHR_BY_CONST_0
-
Auto-generated from RARE rule bv-lshr-by-const-0
-
enumerator
BV_LSHR_BY_CONST_1
-
Auto-generated from RARE rule bv-lshr-by-const-1
-
enumerator
BV_LSHR_BY_CONST_2
-
Auto-generated from RARE rule bv-lshr-by-const-2
-
enumerator
BV_ASHR_BY_CONST_0
-
Auto-generated from RARE rule bv-ashr-by-const-0
-
enumerator
BV_ASHR_BY_CONST_1
-
Auto-generated from RARE rule bv-ashr-by-const-1
-
enumerator
BV_ASHR_BY_CONST_2
-
Auto-generated from RARE rule bv-ashr-by-const-2
-
enumerator
BV_AND_CONCAT_PULLUP
-
Auto-generated from RARE rule bv-and-concat-pullup
-
enumerator
BV_OR_CONCAT_PULLUP
-
Auto-generated from RARE rule bv-or-concat-pullup
-
enumerator
BV_XOR_CONCAT_PULLUP
-
Auto-generated from RARE rule bv-xor-concat-pullup
-
enumerator
BV_BITWISE_IDEMP_1
-
Auto-generated from RARE rule bv-bitwise-idemp-1
-
enumerator
BV_BITWISE_IDEMP_2
-
Auto-generated from RARE rule bv-bitwise-idemp-2
-
enumerator
BV_AND_ZERO
-
Auto-generated from RARE rule bv-and-zero
-
enumerator
BV_AND_ONE
-
Auto-generated from RARE rule bv-and-one
-
enumerator
BV_OR_ONE
-
Auto-generated from RARE rule bv-or-one
-
enumerator
BV_XOR_DUPLICATE
-
Auto-generated from RARE rule bv-xor-duplicate
-
enumerator
BV_XOR_ONES
-
Auto-generated from RARE rule bv-xor-ones
-
enumerator
BV_XOR_ZERO
-
Auto-generated from RARE rule bv-xor-zero
-
enumerator
BV_BITWISE_NOT_AND
-
Auto-generated from RARE rule bv-bitwise-not-and
-
enumerator
BV_BITWISE_NOT_OR
-
Auto-generated from RARE rule bv-bitwise-not-or
-
enumerator
BV_XOR_NOT
-
Auto-generated from RARE rule bv-xor-not
-
enumerator
BV_NOT_IDEMP
-
Auto-generated from RARE rule bv-not-idemp
-
enumerator
BV_ULT_ZERO_1
-
Auto-generated from RARE rule bv-ult-zero-1
-
enumerator
BV_ULT_ZERO_2
-
Auto-generated from RARE rule bv-ult-zero-2
-
enumerator
BV_ULT_SELF
-
Auto-generated from RARE rule bv-ult-self
-
enumerator
BV_LT_SELF
-
Auto-generated from RARE rule bv-lt-self
-
enumerator
BV_ULE_SELF
-
Auto-generated from RARE rule bv-ule-self
-
enumerator
BV_ULE_ZERO
-
Auto-generated from RARE rule bv-ule-zero
-
enumerator
BV_ZERO_ULE
-
Auto-generated from RARE rule bv-zero-ule
-
enumerator
BV_SLE_SELF
-
Auto-generated from RARE rule bv-sle-self
-
enumerator
BV_ULE_MAX
-
Auto-generated from RARE rule bv-ule-max
-
enumerator
BV_NOT_ULT
-
Auto-generated from RARE rule bv-not-ult
-
enumerator
BV_NOT_ULE
-
Auto-generated from RARE rule bv-not-ule
-
enumerator
BV_NOT_SLE
-
Auto-generated from RARE rule bv-not-sle
-
enumerator
BV_MULT_POW2_1
-
Auto-generated from RARE rule bv-mult-pow2-1
-
enumerator
BV_MULT_POW2_2
-
Auto-generated from RARE rule bv-mult-pow2-2
-
enumerator
BV_MULT_POW2_2B
-
Auto-generated from RARE rule bv-mult-pow2-2b
-
enumerator
BV_EXTRACT_MULT_LEADING_BIT
-
Auto-generated from RARE rule bv-extract-mult-leading-bit
-
enumerator
BV_UDIV_POW2_NOT_ONE
-
Auto-generated from RARE rule bv-udiv-pow2-not-one
-
enumerator
BV_UDIV_ZERO
-
Auto-generated from RARE rule bv-udiv-zero
-
enumerator
BV_UDIV_ONE
-
Auto-generated from RARE rule bv-udiv-one
-
enumerator
BV_UREM_POW2_NOT_ONE
-
Auto-generated from RARE rule bv-urem-pow2-not-one
-
enumerator
BV_UREM_ONE
-
Auto-generated from RARE rule bv-urem-one
-
enumerator
BV_UREM_SELF
-
Auto-generated from RARE rule bv-urem-self
-
enumerator
BV_SHL_ZERO
-
Auto-generated from RARE rule bv-shl-zero
-
enumerator
BV_LSHR_ZERO
-
Auto-generated from RARE rule bv-lshr-zero
-
enumerator
BV_ASHR_ZERO
-
Auto-generated from RARE rule bv-ashr-zero
-
enumerator
BV_UGT_UREM
-
Auto-generated from RARE rule bv-ugt-urem
-
enumerator
BV_ULT_ONE
-
Auto-generated from RARE rule bv-ult-one
-
enumerator
BV_SLT_ZERO
-
Auto-generated from RARE rule bv-slt-zero
-
enumerator
BV_MERGE_SIGN_EXTEND_1
-
Auto-generated from RARE rule bv-merge-sign-extend-1
-
enumerator
BV_MERGE_SIGN_EXTEND_2
-
Auto-generated from RARE rule bv-merge-sign-extend-2
-
enumerator
BV_MERGE_SIGN_EXTEND_3
-
Auto-generated from RARE rule bv-merge-sign-extend-3
-
enumerator
BV_SIGN_EXTEND_EQ_CONST_1
-
Auto-generated from RARE rule bv-sign-extend-eq-const-1
-
enumerator
BV_SIGN_EXTEND_EQ_CONST_2
-
Auto-generated from RARE rule bv-sign-extend-eq-const-2
-
enumerator
BV_ZERO_EXTEND_EQ_CONST_1
-
Auto-generated from RARE rule bv-zero-extend-eq-const-1
-
enumerator
BV_ZERO_EXTEND_EQ_CONST_2
-
Auto-generated from RARE rule bv-zero-extend-eq-const-2
-
enumerator
BV_ZERO_EXTEND_ULT_CONST_1
-
Auto-generated from RARE rule bv-zero-extend-ult-const-1
-
enumerator
BV_ZERO_EXTEND_ULT_CONST_2
-
Auto-generated from RARE rule bv-zero-extend-ult-const-2
-
enumerator
BV_SIGN_EXTEND_ULT_CONST_1
-
Auto-generated from RARE rule bv-sign-extend-ult-const-1
-
enumerator
BV_SIGN_EXTEND_ULT_CONST_2
-
Auto-generated from RARE rule bv-sign-extend-ult-const-2
-
enumerator
BV_SIGN_EXTEND_ULT_CONST_3
-
Auto-generated from RARE rule bv-sign-extend-ult-const-3
-
enumerator
BV_SIGN_EXTEND_ULT_CONST_4
-
Auto-generated from RARE rule bv-sign-extend-ult-const-4
-
enumerator
SETS_EQ_SINGLETON_EMP
-
Auto-generated from RARE rule sets-eq-singleton-emp
-
enumerator
SETS_MEMBER_SINGLETON
-
Auto-generated from RARE rule sets-member-singleton
-
enumerator
SETS_MEMBER_EMP
-
Auto-generated from RARE rule sets-member-emp
-
enumerator
SETS_SUBSET_ELIM
-
Auto-generated from RARE rule sets-subset-elim
-
enumerator
SETS_UNION_COMM
-
Auto-generated from RARE rule sets-union-comm
-
enumerator
SETS_INTER_COMM
-
Auto-generated from RARE rule sets-inter-comm
-
enumerator
SETS_INTER_EMP1
-
Auto-generated from RARE rule sets-inter-emp1
-
enumerator
SETS_INTER_EMP2
-
Auto-generated from RARE rule sets-inter-emp2
-
enumerator
SETS_MINUS_EMP1
-
Auto-generated from RARE rule sets-minus-emp1
-
enumerator
SETS_MINUS_EMP2
-
Auto-generated from RARE rule sets-minus-emp2
-
enumerator
SETS_UNION_EMP1
-
Auto-generated from RARE rule sets-union-emp1
-
enumerator
SETS_UNION_EMP2
-
Auto-generated from RARE rule sets-union-emp2
-
enumerator
SETS_INTER_MEMBER
-
Auto-generated from RARE rule sets-inter-member
-
enumerator
SETS_MINUS_MEMBER
-
Auto-generated from RARE rule sets-minus-member
-
enumerator
SETS_UNION_MEMBER
-
Auto-generated from RARE rule sets-union-member
-
enumerator
SETS_CHOOSE_SINGLETON
-
Auto-generated from RARE rule sets-choose-singleton
-
enumerator
SETS_CARD_SINGLETON
-
Auto-generated from RARE rule sets-card-singleton
-
enumerator
SETS_CARD_UNION
-
Auto-generated from RARE rule sets-card-union
-
enumerator
SETS_CARD_MINUS
-
Auto-generated from RARE rule sets-card-minus
-
enumerator
SETS_CARD_EMP
-
Auto-generated from RARE rule sets-card-emp
-
enumerator
STR_EQ_CTN_FALSE
-
Auto-generated from RARE rule str-eq-ctn-false
-
enumerator
STR_EQ_CTN_FULL_FALSE1
-
Auto-generated from RARE rule str-eq-ctn-full-false1
-
enumerator
STR_EQ_CTN_FULL_FALSE2
-
Auto-generated from RARE rule str-eq-ctn-full-false2
-
enumerator
STR_CONCAT_FLATTEN
-
Auto-generated from RARE rule str-concat-flatten
-
enumerator
STR_CONCAT_FLATTEN_EQ
-
Auto-generated from RARE rule str-concat-flatten-eq
-
enumerator
STR_CONCAT_FLATTEN_EQ_REV
-
Auto-generated from RARE rule str-concat-flatten-eq-rev
-
enumerator
STR_SUBSTR_EMPTY_STR
-
Auto-generated from RARE rule str-substr-empty-str
-
enumerator
STR_SUBSTR_EMPTY_RANGE
-
Auto-generated from RARE rule str-substr-empty-range
-
enumerator
STR_SUBSTR_EMPTY_START
-
Auto-generated from RARE rule str-substr-empty-start
-
enumerator
STR_SUBSTR_EMPTY_START_NEG
-
Auto-generated from RARE rule str-substr-empty-start-neg
-
enumerator
STR_SUBSTR_EQ_EMPTY
-
Auto-generated from RARE rule str-substr-eq-empty
-
enumerator
STR_LEN_REPLACE_INV
-
Auto-generated from RARE rule str-len-replace-inv
-
enumerator
STR_LEN_UPDATE_INV
-
Auto-generated from RARE rule str-len-update-inv
-
enumerator
STR_LEN_SUBSTR_IN_RANGE
-
Auto-generated from RARE rule str-len-substr-in-range
-
enumerator
STR_LEN_SUBSTR_UB1
-
Auto-generated from RARE rule str-len-substr-ub1
-
enumerator
STR_LEN_SUBSTR_UB2
-
Auto-generated from RARE rule str-len-substr-ub2
-
enumerator
STR_CONCAT_CLASH
-
Auto-generated from RARE rule str-concat-clash
-
enumerator
STR_CONCAT_CLASH_REV
-
Auto-generated from RARE rule str-concat-clash-rev
-
enumerator
STR_CONCAT_CLASH2
-
Auto-generated from RARE rule str-concat-clash2
-
enumerator
STR_CONCAT_CLASH2_REV
-
Auto-generated from RARE rule str-concat-clash2-rev
-
enumerator
STR_CONCAT_UNIFY
-
Auto-generated from RARE rule str-concat-unify
-
enumerator
STR_CONCAT_UNIFY_REV
-
Auto-generated from RARE rule str-concat-unify-rev
-
enumerator
STR_CONCAT_UNIFY_BASE
-
Auto-generated from RARE rule str-concat-unify-base
-
enumerator
STR_CONCAT_UNIFY_BASE_REV
-
Auto-generated from RARE rule str-concat-unify-base-rev
-
enumerator
STR_CONCAT_CLASH_CHAR
-
Auto-generated from RARE rule str-concat-clash-char
-
enumerator
STR_CONCAT_CLASH_CHAR_REV
-
Auto-generated from RARE rule str-concat-clash-char-rev
-
enumerator
STR_PREFIXOF_ELIM
-
Auto-generated from RARE rule str-prefixof-elim
-
enumerator
STR_SUFFIXOF_ELIM
-
Auto-generated from RARE rule str-suffixof-elim
-
enumerator
STR_PREFIXOF_ONE
-
Auto-generated from RARE rule str-prefixof-one
-
enumerator
STR_SUFFIXOF_ONE
-
Auto-generated from RARE rule str-suffixof-one
-
enumerator
STR_SUBSTR_COMBINE1
-
Auto-generated from RARE rule str-substr-combine1
-
enumerator
STR_SUBSTR_COMBINE2
-
Auto-generated from RARE rule str-substr-combine2
-
enumerator
STR_SUBSTR_COMBINE3
-
Auto-generated from RARE rule str-substr-combine3
-
enumerator
STR_SUBSTR_COMBINE4
-
Auto-generated from RARE rule str-substr-combine4
-
enumerator
STR_SUBSTR_CONCAT1
-
Auto-generated from RARE rule str-substr-concat1
-
enumerator
STR_SUBSTR_CONCAT2
-
Auto-generated from RARE rule str-substr-concat2
-
enumerator
STR_SUBSTR_FULL
-
Auto-generated from RARE rule str-substr-full
-
enumerator
STR_SUBSTR_FULL_EQ
-
Auto-generated from RARE rule str-substr-full-eq
-
enumerator
STR_CONTAINS_REFL
-
Auto-generated from RARE rule str-contains-refl
-
enumerator
STR_CONTAINS_CONCAT_FIND
-
Auto-generated from RARE rule str-contains-concat-find
-
enumerator
STR_CONTAINS_SPLIT_CHAR
-
Auto-generated from RARE rule str-contains-split-char
-
enumerator
STR_CONTAINS_LT_LEN
-
Auto-generated from RARE rule str-contains-lt-len
-
enumerator
STR_CONTAINS_LEQ_LEN_EQ
-
Auto-generated from RARE rule str-contains-leq-len-eq
-
enumerator
STR_CONTAINS_EMP
-
Auto-generated from RARE rule str-contains-emp
-
enumerator
STR_CONTAINS_IS_EMP
-
Auto-generated from RARE rule str-contains-is-emp
-
enumerator
STR_CONCAT_EMP
-
Auto-generated from RARE rule str-concat-emp
-
enumerator
STR_AT_ELIM
-
Auto-generated from RARE rule str-at-elim
-
enumerator
STR_REPLACE_SELF
-
Auto-generated from RARE rule str-replace-self
-
enumerator
STR_REPLACE_NO_CONTAINS
-
Auto-generated from RARE rule str-replace-no-contains
-
enumerator
STR_REPLACE_EMPTY
-
Auto-generated from RARE rule str-replace-empty
-
enumerator
STR_LEN_CONCAT_REC
-
Auto-generated from RARE rule str-len-concat-rec
-
enumerator
STR_INDEXOF_SELF
-
Auto-generated from RARE rule str-indexof-self
-
enumerator
STR_INDEXOF_NO_CONTAINS
-
Auto-generated from RARE rule str-indexof-no-contains
-
enumerator
STR_TO_LOWER_CONCAT
-
Auto-generated from RARE rule str-to-lower-concat
-
enumerator
STR_TO_UPPER_CONCAT
-
Auto-generated from RARE rule str-to-upper-concat
-
enumerator
STR_TO_LOWER_UPPER
-
Auto-generated from RARE rule str-to-lower-upper
-
enumerator
STR_TO_UPPER_LOWER
-
Auto-generated from RARE rule str-to-upper-lower
-
enumerator
RE_ALL_ELIM
-
Auto-generated from RARE rule re-all-elim
-
enumerator
RE_OPT_ELIM
-
Auto-generated from RARE rule re-opt-elim
-
enumerator
RE_DIFF_ELIM
-
Auto-generated from RARE rule re-diff-elim
-
enumerator
RE_CONCAT_EMP
-
Auto-generated from RARE rule re-concat-emp
-
enumerator
RE_CONCAT_NONE
-
Auto-generated from RARE rule re-concat-none
-
enumerator
RE_CONCAT_FLATTEN
-
Auto-generated from RARE rule re-concat-flatten
-
enumerator
RE_CONCAT_STAR_SWAP
-
Auto-generated from RARE rule re-concat-star-swap
-
enumerator
RE_CONCAT_MERGE
-
Auto-generated from RARE rule re-concat-merge
-
enumerator
RE_UNION_ALL
-
Auto-generated from RARE rule re-union-all
-
enumerator
RE_UNION_NONE
-
Auto-generated from RARE rule re-union-none
-
enumerator
RE_UNION_FLATTEN
-
Auto-generated from RARE rule re-union-flatten
-
enumerator
RE_UNION_DUP
-
Auto-generated from RARE rule re-union-dup
-
enumerator
RE_INTER_ALL
-
Auto-generated from RARE rule re-inter-all
-
enumerator
RE_INTER_NONE
-
Auto-generated from RARE rule re-inter-none
-
enumerator
RE_INTER_FLATTEN
-
Auto-generated from RARE rule re-inter-flatten
-
enumerator
RE_INTER_DUP
-
Auto-generated from RARE rule re-inter-dup
-
enumerator
RE_LOOP_NEG
-
Auto-generated from RARE rule re-loop-neg
-
enumerator
RE_INTER_CSTRING
-
Auto-generated from RARE rule re-inter-cstring
-
enumerator
RE_INTER_CSTRING_NEG
-
Auto-generated from RARE rule re-inter-cstring-neg
-
enumerator
STR_NTH_ELIM_CODE
-
Auto-generated from RARE rule str-nth-elim-code
-
enumerator
STR_SUBSTR_LEN_INCLUDE
-
Auto-generated from RARE rule str-substr-len-include
-
enumerator
STR_SUBSTR_LEN_INCLUDE_PRE
-
Auto-generated from RARE rule str-substr-len-include-pre
-
enumerator
STR_SUBSTR_LEN_SKIP
-
Auto-generated from RARE rule str-substr-len-skip
-
enumerator
SEQ_REV_CONCAT
-
Auto-generated from RARE rule seq-rev-concat
-
enumerator
SEQ_LEN_UNIT
-
Auto-generated from RARE rule seq-len-unit
-
enumerator
SEQ_NTH_UNIT
-
Auto-generated from RARE rule seq-nth-unit
-
enumerator
SEQ_REV_UNIT
-
Auto-generated from RARE rule seq-rev-unit
-
enumerator
RE_IN_EMPTY
-
Auto-generated from RARE rule re-in-empty
-
enumerator
RE_IN_SIGMA
-
Auto-generated from RARE rule re-in-sigma
-
enumerator
RE_IN_SIGMA_STAR
-
Auto-generated from RARE rule re-in-sigma-star
-
enumerator
RE_IN_CSTRING
-
Auto-generated from RARE rule re-in-cstring
-
enumerator
RE_IN_COMP
-
Auto-generated from RARE rule re-in-comp
-
enumerator
STR_IN_RE_UNION_ELIM
-
Auto-generated from RARE rule str-in-re-union-elim
-
enumerator
STR_IN_RE_INTER_ELIM
-
Auto-generated from RARE rule str-in-re-inter-elim
-
enumerator
STR_IN_RE_RANGE_ELIM
-
Auto-generated from RARE rule str-in-re-range-elim
-
enumerator
STR_IN_RE_CONTAINS
-
Auto-generated from RARE rule str-in-re-contains
-
enumerator
STR_IN_RE_STRIP_PREFIX
-
Auto-generated from RARE rule str-in-re-strip-prefix
-
enumerator
STR_IN_RE_STRIP_PREFIX_NEG
-
Auto-generated from RARE rule str-in-re-strip-prefix-neg
-
enumerator
STR_IN_RE_STRIP_PREFIX_SR_SINGLE
-
Auto-generated from RARE rule str-in-re-strip-prefix-sr-single
-
enumerator
STR_IN_RE_STRIP_PREFIX_SR_SINGLE_NEG
-
Auto-generated from RARE rule str-in-re-strip-prefix-sr-single-neg
-
enumerator
STR_IN_RE_STRIP_PREFIX_SRS_SINGLE
-
Auto-generated from RARE rule str-in-re-strip-prefix-srs-single
-
enumerator
STR_IN_RE_STRIP_PREFIX_SRS_SINGLE_NEG
-
Auto-generated from RARE rule str-in-re-strip-prefix-srs-single-neg
-
enumerator
STR_IN_RE_STRIP_PREFIX_S_SINGLE
-
Auto-generated from RARE rule str-in-re-strip-prefix-s-single
-
enumerator
STR_IN_RE_STRIP_PREFIX_S_SINGLE_NEG
-
Auto-generated from RARE rule str-in-re-strip-prefix-s-single-neg
-
enumerator
STR_IN_RE_STRIP_PREFIX_BASE
-
Auto-generated from RARE rule str-in-re-strip-prefix-base
-
enumerator
STR_IN_RE_STRIP_PREFIX_BASE_NEG
-
Auto-generated from RARE rule str-in-re-strip-prefix-base-neg
-
enumerator
STR_IN_RE_STRIP_PREFIX_BASE_S_SINGLE
-
Auto-generated from RARE rule str-in-re-strip-prefix-base-s-single
-
enumerator
STR_IN_RE_STRIP_PREFIX_BASE_S_SINGLE_NEG
-
Auto-generated from RARE rule str-in-re-strip-prefix-base-s-single-neg
-
enumerator
STR_IN_RE_STRIP_CHAR
-
Auto-generated from RARE rule str-in-re-strip-char
-
enumerator
STR_IN_RE_STRIP_CHAR_S_SINGLE
-
Auto-generated from RARE rule str-in-re-strip-char-s-single
-
enumerator
STR_IN_RE_STRIP_PREFIX_REV
-
Auto-generated from RARE rule str-in-re-strip-prefix-rev
-
enumerator
STR_IN_RE_STRIP_PREFIX_NEG_REV
-
Auto-generated from RARE rule str-in-re-strip-prefix-neg-rev
-
enumerator
STR_IN_RE_STRIP_PREFIX_SR_SINGLE_REV
-
Auto-generated from RARE rule str-in-re-strip-prefix-sr-single-rev
-
enumerator
STR_IN_RE_STRIP_PREFIX_SR_SINGLE_NEG_REV
-
Auto-generated from RARE rule str-in-re-strip-prefix-sr-single-neg-rev
-
enumerator
STR_IN_RE_STRIP_PREFIX_SRS_SINGLE_REV
-
Auto-generated from RARE rule str-in-re-strip-prefix-srs-single-rev
-
enumerator
STR_IN_RE_STRIP_PREFIX_SRS_SINGLE_NEG_REV
-
Auto-generated from RARE rule str-in-re-strip-prefix-srs-single-neg-rev
-
enumerator
STR_IN_RE_STRIP_PREFIX_S_SINGLE_REV
-
Auto-generated from RARE rule str-in-re-strip-prefix-s-single-rev
-
enumerator
STR_IN_RE_STRIP_PREFIX_S_SINGLE_NEG_REV
-
Auto-generated from RARE rule str-in-re-strip-prefix-s-single-neg-rev
-
enumerator
STR_IN_RE_STRIP_PREFIX_BASE_REV
-
Auto-generated from RARE rule str-in-re-strip-prefix-base-rev
-
enumerator
STR_IN_RE_STRIP_PREFIX_BASE_NEG_REV
-
Auto-generated from RARE rule str-in-re-strip-prefix-base-neg-rev
-
enumerator
STR_IN_RE_STRIP_PREFIX_BASE_S_SINGLE_REV
-
Auto-generated from RARE rule str-in-re-strip-prefix-base-s-single-rev
-
enumerator
STR_IN_RE_STRIP_PREFIX_BASE_S_SINGLE_NEG_REV
-
Auto-generated from RARE rule str-in-re-strip-prefix-base-s-single-neg-rev
-
enumerator
STR_IN_RE_STRIP_CHAR_REV
-
Auto-generated from RARE rule str-in-re-strip-char-rev
-
enumerator
STR_IN_RE_STRIP_CHAR_S_SINGLE_REV
-
Auto-generated from RARE rule str-in-re-strip-char-s-single-rev
-
enumerator
STR_IN_RE_REQ_UNFOLD
-
Auto-generated from RARE rule str-in-re-req-unfold
-
enumerator
STR_IN_RE_REQ_UNFOLD_REV
-
Auto-generated from RARE rule str-in-re-req-unfold-rev
-
enumerator
STR_IN_RE_SKIP_UNFOLD
-
Auto-generated from RARE rule str-in-re-skip-unfold
-
enumerator
STR_IN_RE_SKIP_UNFOLD_REV
-
Auto-generated from RARE rule str-in-re-skip-unfold-rev
-
enumerator
STR_IN_RE_TEST_UNFOLD
-
Auto-generated from RARE rule str-in-re-test-unfold
-
enumerator
STR_IN_RE_TEST_UNFOLD_REV
-
Auto-generated from RARE rule str-in-re-test-unfold-rev
-
enumerator
EQ_REFL
-
Auto-generated from RARE rule eq-refl
-
enumerator
EQ_SYMM
-
Auto-generated from RARE rule eq-symm
-
enumerator
DISTINCT_BINARY_ELIM
-
Auto-generated from RARE rule distinct-binary-elim
-
enumerator
UF_BV2NAT_GEQ_ELIM
-
Auto-generated from RARE rule uf-bv2nat-geq-elim
-
enumerator
NONE
-
std
::
ostream
&
cvc5
::
operator
<<
(
std
::
ostream
&
out
,
ProofRewriteRule
rule
)
-
Writes a proof rewrite rule name to a stream.
- Parameters :
-
-
out – The stream to write to
-
rule – The proof rewrite rule to write to the stream
-
- Returns :
-
The stream
-
std
::
string
std
::
to_string
(
cvc5
::
ProofRewriteRule
rule
)
-
Converts a proof rewrite rule to a string.
- Parameters :
-
rule – The proof rewrite rule
- Returns :
-
The name of the proof rewrite rule
-
template
<
>
struct hash < cvc5 :: ProofRewriteRule >
-
Hash function for ProofRewriteRules.
Public Functions
-
size_t
operator
()
(
cvc5
::
ProofRewriteRule
rule
)
const
-
Hashes a ProofRewriteRule to a size_t.
- Parameters :
-
rule – The proof rewrite rule.
- Returns :
-
The hash value.
-
size_t
operator
()
(
cvc5
::
ProofRewriteRule
rule
)
const