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Introduction

A Versatile and Industrial-Strength SMT Solver

§ Support for all standard SMT-LIB and additional
non-standard theories

§ Beyond SMT solving

§ Proof generation
§ Syntax-Guided Synthesis (SyGuS)
§ Interpolation
§ Abduction

§ Extensively used in industry

§ Comprehensive, stable API and documentation

§ Permissive license 3
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Theory Solvers

§ Linear arithmetic [Kin14, KBD13, KBT14]

§ Non-linear arithmetic [RTJB17]

§ Arrays [JB13]

§ Bit-vectors

§ Datatypes [BST07, RB15, RVB`18]

§ Floating-point arithmetic [BSS19]

§ Sets and relations [BBRT17, MRTB17]

§ Separation logic [RISK16]

§ Strings and sequences [LRT`14, RWB`17, LTR`15, RNBT19, RNBT20]

§ Uninterpreted functions (with support for finite cardinality constraints) [RTGK13]

§ Quantifiers [RTdM14, BFR17, RTG`13, RBF18, RKK17, NPR`21a, NPR`21b,
RK15, RBCT16, RDK`15]
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Feature Highlights



Feature Highlights: API

§ New C++ API

§ Lean, comprehensive, feature-complete
§ Parser module uses the same API
§ Comprehensive documentation

§ Python bindings: 2 variants

§ Base bindings: Complete Cython-based
bindings for the API

§ Pythonic bindings: High-level bindings,
drop-in replacement for Z3py

§ Java bindings

§ Complete JNI-based bindings for the API

Demo

Solving a simple problem using the Pythonic API
7

https://cvc5.github.io/docs/cvc5-0.0.9/api/cpp/cpp.html
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Feature Highlights: Proofs

§ New module for producing proofs for unsatisfiable inputs

§ Enables independent checking of answers
§ Automating proofs in interactive theorem provers

§ Goals

§ Low overhead
§ Detailed, efficiently checkable proofs
§ Support all performance-critical components
§ Output in different proof formats

Lean
Converter

Alethe
Converter

LFSC
Converter

Proof Module

Demo

Generating a proof for a simple problem.
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Feature Highlights: Syntax-Guided Synthesis (SyGuS)

Specification

Df .@x .Ppf , xq

There exists a function f for which property P holds
for all x in some theory T .

Syntax

A :“ A` A | ´ A | x | y | 0 | 1 | itepB,A,Aq

B :“ B ^ B | ␣B | A “ A | A ě A | K

Demo

Flash Fill-style synthesis.
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Feature Highlights: Interpolation/Abduction

Interpolation

C A

B

Find a term C such that A ( C and C ( B.
Free symbols in C are from set of shared
symbols between A and B.

Abduction

C

A B

Find a term C such that A^C is satisfiable
and A^ C ( B.

Demo

Fixing a floating-point rewrite using abduction. 10
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Evaluation



Evaluation: Setup

§ Comparison with CVC4 1.8 and Z3

§ Benchmark set: 379,750 non-incremental SMT-LIB benchmarks

§ All logics (quantified and quantifier-free)
§ Excluding 1,173 misclassified benchmarks

§ Timeout: 1,200 seconds (like SMT-COMP)
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Evaluation: Results
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Future Work

§ Optimization solver

§ Computing satisfying assignments that optimize objectives

§ New theories/extensions of theories

§ Support for higher-order map/fold combinators

§ Parallel SMT solving

§ Integrated support for running multiple configurations in parallel/sequence

§ Performance tuning

§ Complete replacement of ANTLR parser
§ Lifting local search approach for bit-vectors to floating-point arithmetic
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More Information

https://cvc5.github.io/ https://github.com/cvc5/cvc5/
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Results

Division CVC5 CVC4 Z3

Arith (7104) 6593 6498 6844
Bitvec (6045) 5741 5690 5664
Equality (12159) 6677 6681 4688
Equality+LinearArith (55948) 49395 48487 49503
Equality+MachineArith (4712) 2065 1832 1804
Equality+NonLinearArith (17260) 11088 10906 9341
FPArith (3170) 2625 2113 2593
QF Bitvec (42450) 41569 41448 40582
QF Equality (16254) 16124 16121 16115
QF Equality+Bitvec (16518) 16274 16333 16318
QF Equality+LinearArith (3924) 3778 3782 3822
QF Equality+NonLinearArith (673) 598 610 616
QF FPArith (76084) 75998 75965 75816
QF LinearIntArith (9765) 8619 8778 8464
QF LinearRealArith (2008) 1849 1881 1864
QF NonLinearIntArith (24261) 17525 16860 18357
QF NonLinearRealArith (11552) 10889 9207 10354
QF Strings (69863) 69231 69367 68074

Total (379750) 346638 342559 340819 15
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