
A Versatile and Industrial-Strength SMT Solver

Haniel Barbosa,1 Clark Barrett,2 Martin Brain,3 Gereon Kremer,2 Hanna Lachnitt,2 Makai Mann,2

Abdalrhman Mohamed,4 Mudathir Mohamed,4 Aina Niemetz,2 Andres Nötzli,2 Alex Ozdemir,2 Mathias
Preiner,2 Andrew Reynolds,4 Ying Sheng,2 Cesare Tinelli,4 Yoni Zohar5

1 Universidade Federal de Minas Gerais, 2 Stanford University, 3 City, University of London,
4 The University of Iowa, 5 Bar-Ilan University

1

History

1996

SVC

2002

CVC

2003

CVC Lite

2007

CVC3

2012

CVC4

2022

CVC5

2

Introduction

A Versatile and Industrial-Strength SMT Solver

§ Support for all standard SMT-LIB and additional
non-standard theories

§ Beyond SMT solving

§ Proof generation
§ Syntax-Guided Synthesis (SyGuS)
§ Interpolation
§ Abduction

§ Extensively used in industry

§ Comprehensive, stable API and documentation

§ Permissive license 3

Introduction

A Versatile and Industrial-Strength SMT Solver

§ Support for all standard SMT-LIB and additional
non-standard theories

§ Beyond SMT solving

§ Proof generation
§ Syntax-Guided Synthesis (SyGuS)
§ Interpolation
§ Abduction

§ Extensively used in industry

§ Comprehensive, stable API and documentation

§ Permissive license 3

Introduction

A Versatile and Industrial-Strength SMT Solver

§ Support for all standard SMT-LIB and additional
non-standard theories

§ Beyond SMT solving

§ Proof generation
§ Syntax-Guided Synthesis (SyGuS)
§ Interpolation
§ Abduction

§ Extensively used in industry

§ Comprehensive, stable API and documentation

§ Permissive license 3

Agenda

§ Architecture

§ Feature Highlights

§ New API
§ Proofs
§ SyGuS
§ Interpolation and Abduction

§ Evaluation

4

Architecture

Workflow

CLI

ParserPython APIJava API

C++ API

CVC5 CoreAbduction Solver Interpolation Solver

SyGuS Solver Quantifier-Elimination Solver

SMT Solver

Propositional EnginePreprocessor

Rewriter

Theory Engine

Preprocessing
Passes

Combination Engine

Theory Solvers

Quantifiers Module

MiniSat

Decision Engine

Clausifier

Lean
Converter

Alethe
Converter

LFSC
Converter

Proof Module

Node Manager

Skolem Manager

Context-Dependent
Data Structures

5

Workflow

CLI

ParserPython APIJava API

C++ API

CVC5 CoreAbduction Solver Interpolation Solver

SyGuS Solver Quantifier-Elimination Solver

SMT Solver

Propositional EnginePreprocessor

Rewriter

Theory Engine

Preprocessing
Passes

Combination Engine

Theory Solvers

Quantifiers Module

MiniSat

Decision Engine

Clausifier

Lean
Converter

Alethe
Converter

LFSC
Converter

Proof Module

Node Manager

Skolem Manager

Context-Dependent
Data Structures

5

Workflow

CLI

ParserPython APIJava API

C++ API

CVC5 CoreAbduction Solver Interpolation Solver

SyGuS Solver Quantifier-Elimination Solver

SMT Solver

Propositional EnginePreprocessor

Rewriter

Theory Engine

Preprocessing
Passes

Combination Engine

Theory Solvers

Quantifiers Module

MiniSat

Decision Engine

Clausifier

Lean
Converter

Alethe
Converter

LFSC
Converter

Proof Module

Node Manager

Skolem Manager

Context-Dependent
Data Structures

5

Workflow

CLI

ParserPython APIJava API

C++ API

CVC5 CoreAbduction Solver Interpolation Solver

SyGuS Solver Quantifier-Elimination Solver

SMT Solver

Propositional EnginePreprocessor

Rewriter

Theory Engine

Preprocessing
Passes

Combination Engine

Theory Solvers

Quantifiers Module

MiniSat

Decision Engine

Clausifier

Lean
Converter

Alethe
Converter

LFSC
Converter

Proof Module

Node Manager

Skolem Manager

Context-Dependent
Data Structures

5

Workflow

CLI

ParserPython APIJava API

C++ API

CVC5 CoreAbduction Solver Interpolation Solver

SyGuS Solver Quantifier-Elimination Solver

SMT Solver

Propositional EnginePreprocessor

Rewriter

Theory Engine

Preprocessing
Passes

Combination Engine

Theory Solvers

Quantifiers Module

MiniSat

Decision Engine

Clausifier

Lean
Converter

Alethe
Converter

LFSC
Converter

Proof Module

Node Manager

Skolem Manager

Context-Dependent
Data Structures

5

Workflow

CLI

ParserPython APIJava API

C++ API

CVC5 CoreAbduction Solver Interpolation Solver

SyGuS Solver Quantifier-Elimination Solver

SMT Solver

Propositional EnginePreprocessor

Rewriter

Theory Engine

Preprocessing
Passes

Combination Engine

Theory Solvers

Quantifiers Module

MiniSat

Decision Engine

Clausifier

Lean
Converter

Alethe
Converter

LFSC
Converter

Proof Module

Node Manager

Skolem Manager

Context-Dependent
Data Structures

5

Workflow

CLI

ParserPython APIJava API

C++ API

CVC5 CoreAbduction Solver Interpolation Solver

SyGuS Solver Quantifier-Elimination Solver

SMT Solver

Propositional EnginePreprocessor

Rewriter

Theory Engine

Preprocessing
Passes

Combination Engine

Theory Solvers

Quantifiers Module

MiniSat

Decision Engine

Clausifier

Lean
Converter

Alethe
Converter

LFSC
Converter

Proof Module

Node Manager

Skolem Manager

Context-Dependent
Data Structures

5

Theory Solvers

§ Linear arithmetic [Kin14, KBD13, KBT14]

§ Non-linear arithmetic [RTJB17]

§ Arrays [JB13]

§ Bit-vectors

§ Datatypes [BST07, RB15, RVB`18]

§ Floating-point arithmetic [BSS19]

§ Sets and relations [BBRT17, MRTB17]

§ Separation logic [RISK16]

§ Strings and sequences [LRT`14, RWB`17, LTR`15, RNBT19, RNBT20]

§ Uninterpreted functions (with support for finite cardinality constraints) [RTGK13]

§ Quantifiers [RTdM14, BFR17, RTG`13, RBF18, RKK17, NPR`21a, NPR`21b,
RK15, RBCT16, RDK`15]

6

Feature Highlights

Feature Highlights: API

§ New C++ API

§ Lean, comprehensive, feature-complete
§ Parser module uses the same API
§ Comprehensive documentation

§ Python bindings: 2 variants

§ Base bindings: Complete Cython-based
bindings for the API

§ Pythonic bindings: High-level bindings,
drop-in replacement for Z3py

§ Java bindings

§ Complete JNI-based bindings for the API

Demo

Solving a simple problem using the Pythonic API
7

https://cvc5.github.io/docs/cvc5-0.0.9/api/cpp/cpp.html

Feature Highlights: API

§ New C++ API

§ Lean, comprehensive, feature-complete
§ Parser module uses the same API
§ Comprehensive documentation

§ Python bindings: 2 variants

§ Base bindings: Complete Cython-based
bindings for the API

§ Pythonic bindings: High-level bindings,
drop-in replacement for Z3py

§ Java bindings

§ Complete JNI-based bindings for the API

Demo

Solving a simple problem using the Pythonic API
7

https://cvc5.github.io/docs/cvc5-0.0.9/api/cpp/cpp.html

Feature Highlights: API

§ New C++ API

§ Lean, comprehensive, feature-complete
§ Parser module uses the same API
§ Comprehensive documentation

§ Python bindings: 2 variants

§ Base bindings: Complete Cython-based
bindings for the API

§ Pythonic bindings: High-level bindings,
drop-in replacement for Z3py

§ Java bindings

§ Complete JNI-based bindings for the API

Demo

Solving a simple problem using the Pythonic API
7

https://cvc5.github.io/docs/cvc5-0.0.9/api/cpp/cpp.html

Feature Highlights: API

§ New C++ API

§ Lean, comprehensive, feature-complete
§ Parser module uses the same API
§ Comprehensive documentation

§ Python bindings: 2 variants

§ Base bindings: Complete Cython-based
bindings for the API

§ Pythonic bindings: High-level bindings,
drop-in replacement for Z3py

§ Java bindings

§ Complete JNI-based bindings for the API

Demo

Solving a simple problem using the Pythonic API
7

https://cvc5.github.io/docs/cvc5-0.0.9/api/cpp/cpp.html

Feature Highlights: Proofs

§ New module for producing proofs for unsatisfiable inputs

§ Enables independent checking of answers
§ Automating proofs in interactive theorem provers

§ Goals

§ Low overhead
§ Detailed, efficiently checkable proofs
§ Support all performance-critical components
§ Output in different proof formats

Lean
Converter

Alethe
Converter

LFSC
Converter

Proof Module

Demo

Generating a proof for a simple problem.

8

Feature Highlights: Proofs

§ New module for producing proofs for unsatisfiable inputs

§ Enables independent checking of answers
§ Automating proofs in interactive theorem provers

§ Goals

§ Low overhead
§ Detailed, efficiently checkable proofs
§ Support all performance-critical components
§ Output in different proof formats

Lean
Converter

Alethe
Converter

LFSC
Converter

Proof Module

Demo

Generating a proof for a simple problem.

8

Feature Highlights: Syntax-Guided Synthesis (SyGuS)

Specification

Df .@x .Ppf , xq

There exists a function f for which property P holds
for all x in some theory T .

Syntax

A :“ A` A | ´ A | x | y | 0 | 1 | itepB,A,Aq

B :“ B ^ B | ␣B | A “ A | A ě A | K

Demo

Flash Fill-style synthesis.

9

Feature Highlights: Syntax-Guided Synthesis (SyGuS)

Specification

Df .@x .Ppf , xq

There exists a function f for which property P holds
for all x in some theory T .

Syntax

A :“ A` A | ´ A | x | y | 0 | 1 | itepB,A,Aq

B :“ B ^ B | ␣B | A “ A | A ě A | K

Demo

Flash Fill-style synthesis.

9

Feature Highlights: Syntax-Guided Synthesis (SyGuS)

Specification

Df .@x .Ppf , xq

There exists a function f for which property P holds
for all x in some theory T .

Syntax

A :“ A` A | ´ A | x | y | 0 | 1 | itepB,A,Aq

B :“ B ^ B | ␣B | A “ A | A ě A | K

Demo

Flash Fill-style synthesis.

9

Feature Highlights: Interpolation/Abduction

Interpolation

C A

B

Find a term C such that A (C and C (B.
Free symbols in C are from set of shared
symbols between A and B.

Abduction

C

A B

Find a term C such that A^C is satisfiable
and A^ C (B.

Demo

Fixing a floating-point rewrite using abduction. 10

Feature Highlights: Interpolation/Abduction

Interpolation

C A

B

Find a term C such that A (C and C (B.
Free symbols in C are from set of shared
symbols between A and B.

Abduction

C

A B

Find a term C such that A^C is satisfiable
and A^ C (B.

Demo

Fixing a floating-point rewrite using abduction. 10

Feature Highlights: Interpolation/Abduction

Interpolation

C A

B

Find a term C such that A (C and C (B.
Free symbols in C are from set of shared
symbols between A and B.

Abduction

C

A B

Find a term C such that A^C is satisfiable
and A^ C (B.

Demo

Fixing a floating-point rewrite using abduction. 10

Evaluation

Evaluation: Setup

§ Comparison with CVC4 1.8 and Z3

§ Benchmark set: 379,750 non-incremental SMT-LIB benchmarks

§ All logics (quantified and quantifier-free)
§ Excluding 1,173 misclassified benchmarks

§ Timeout: 1,200 seconds (like SMT-COMP)

11

Evaluation: Results

280000 300000 320000 340000 360000

solved instances

0

200

400

600

800

1000

1200

ru
nt

im
e

[s
]

cvc5

CVC4

z3

12

Future Work

§ Optimization solver

§ Computing satisfying assignments that optimize objectives

§ New theories/extensions of theories

§ Support for higher-order map/fold combinators

§ Parallel SMT solving

§ Integrated support for running multiple configurations in parallel/sequence

§ Performance tuning

§ Complete replacement of ANTLR parser
§ Lifting local search approach for bit-vectors to floating-point arithmetic

13

Future Work

§ Optimization solver

§ Computing satisfying assignments that optimize objectives

§ New theories/extensions of theories

§ Support for higher-order map/fold combinators

§ Parallel SMT solving

§ Integrated support for running multiple configurations in parallel/sequence

§ Performance tuning

§ Complete replacement of ANTLR parser
§ Lifting local search approach for bit-vectors to floating-point arithmetic

13

Future Work

§ Optimization solver

§ Computing satisfying assignments that optimize objectives

§ New theories/extensions of theories

§ Support for higher-order map/fold combinators

§ Parallel SMT solving

§ Integrated support for running multiple configurations in parallel/sequence

§ Performance tuning

§ Complete replacement of ANTLR parser
§ Lifting local search approach for bit-vectors to floating-point arithmetic

13

Future Work

§ Optimization solver

§ Computing satisfying assignments that optimize objectives

§ New theories/extensions of theories

§ Support for higher-order map/fold combinators

§ Parallel SMT solving

§ Integrated support for running multiple configurations in parallel/sequence

§ Performance tuning

§ Complete replacement of ANTLR parser
§ Lifting local search approach for bit-vectors to floating-point arithmetic

13

More Information

https://cvc5.github.io/ https://github.com/cvc5/cvc5/

14

https://cvc5.github.io/
https://github.com/cvc5/cvc5/

Results

Division CVC5 CVC4 Z3

Arith (7104) 6593 6498 6844
Bitvec (6045) 5741 5690 5664
Equality (12159) 6677 6681 4688
Equality+LinearArith (55948) 49395 48487 49503
Equality+MachineArith (4712) 2065 1832 1804
Equality+NonLinearArith (17260) 11088 10906 9341
FPArith (3170) 2625 2113 2593
QF Bitvec (42450) 41569 41448 40582
QF Equality (16254) 16124 16121 16115
QF Equality+Bitvec (16518) 16274 16333 16318
QF Equality+LinearArith (3924) 3778 3782 3822
QF Equality+NonLinearArith (673) 598 610 616
QF FPArith (76084) 75998 75965 75816
QF LinearIntArith (9765) 8619 8778 8464
QF LinearRealArith (2008) 1849 1881 1864
QF NonLinearIntArith (24261) 17525 16860 18357
QF NonLinearRealArith (11552) 10889 9207 10354
QF Strings (69863) 69231 69367 68074

Total (379750) 346638 342559 340819 15

Kshitij Bansal, Clark W. Barrett, Andrew Reynolds, and Cesare Tinelli.
A new decision procedure for finite sets and cardinality constraints in SMT.
CoRR, abs/1702.06259, 2017.

Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds.
Congruence closure with free variables.
In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II, volume 10206 of Lecture
Notes in Computer Science, pages 214–230, 2017.

Martin Brain, Florian Schanda, and Youcheng Sun.
Building better bit-blasting for floating-point problems.
In TACAS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part I,
volume 11427 of LNCS, pages 79–98. Springer, 2019.

Clark Barrett, Igor Shikanian, and Cesare Tinelli.

15

An abstract decision procedure for a theory of inductive data types.
JSAT, 3(1-2):21–46, 2007.

Dejan Jovanovic and Clark W. Barrett.
Being careful about theory combination.
Formal Methods Syst. Des., 42(1):67–90, 2013.

Tim King, Clark W. Barrett, and Bruno Dutertre.
Simplex with sum of infeasibilities for SMT.
In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, pages 189–196. IEEE, 2013.

Tim King, Clark W. Barrett, and Cesare Tinelli.
Leveraging linear and mixed integer programming for SMT.
In Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland,
October 21-24, 2014, pages 139–146. IEEE, 2014.

Tim King.

15

Effective Algorithms for the Satisfiability of Quantifier-Free Formulas Over
Linear Real and Integer Arithmetic.
PhD thesis, New York University, 2014.

Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark W. Barrett, and Morgan Deters.
A DPLL(T) theory solver for a theory of strings and regular expressions.
In CAV, volume 8559 of Lecture Notes in Computer Science, pages 646–662.
Springer, 2014.

Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli, and Clark W.
Barrett.
A decision procedure for regular membership and length constraints over
unbounded strings.
In FroCos, volume 9322 of Lecture Notes in Computer Science, pages 135–150.
Springer, 2015.

Baoluo Meng, Andrew Reynolds, Cesare Tinelli, and Clark W. Barrett.
Relational constraint solving in SMT.

15

In Leonardo de Moura, editor, Automated Deduction - CADE 26 - 26th International
Conference on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017,
Proceedings, volume 10395 of Lecture Notes in Computer Science, pages 148–165.
Springer, 2017.

Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark W. Barrett, and Cesare
Tinelli.
On solving quantified bit-vector constraints using invertibility conditions.
Formal Methods Syst. Des., 57(1):87–115, 2021.

Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark W. Barrett, and Cesare
Tinelli.
Syntax-guided quantifier instantiation.
In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 27th International Conference, TACAS 2021,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings,

15

Part II, volume 12652 of Lecture Notes in Computer Science, pages 145–163.
Springer, 2021.

Andrew Reynolds and Jasmin Christian Blanchette.
A decision procedure for (co)datatypes in SMT solvers.
In Amy P. Felty and Aart Middeldorp, editors, Automated Deduction - CADE-25 - 25th
International Conference on Automated Deduction, Berlin, Germany, August 1-7,
2015, Proceedings, volume 9195 of Lecture Notes in Computer Science, pages
197–213. Springer, 2015.

Andrew Reynolds, Jasmin Christian Blanchette, Simon Cruanes, and Cesare Tinelli.
Model finding for recursive functions in SMT.
In Nicola Olivetti and Ashish Tiwari, editors, Automated Reasoning - 8th International
Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016,
Proceedings, volume 9706 of Lecture Notes in Computer Science, pages 133–151.
Springer, 2016.

Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine.

15

Revisiting enumerative instantiation.
In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 24th International Conference, TACAS 2018,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II, volume
10806 of Lecture Notes in Computer Science, pages 112–131. Springer, 2018.

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W.
Barrett.
Counterexample-guided quantifier instantiation for synthesis in SMT.
In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided Verification -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part II, volume 9207 of Lecture Notes in Computer Science, pages
198–216. Springer, 2015.

Andrew Reynolds, Radu Iosif, Cristina Serban, and Tim King.
A decision procedure for separation logic in SMT.

15

In Cyrille Artho, Axel Legay, and Doron Peled, editors, Automated Technology for
Verification and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan,
October 17-20, 2016, Proceedings, volume 9938 of Lecture Notes in Computer
Science, pages 244–261, 2016.

Andrew Reynolds and Viktor Kuncak.
Induction for SMT solvers.
In Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen, editors, Verification,
Model Checking, and Abstract Interpretation - 16th International Conference, VMCAI
2015, Mumbai, India, January 12-14, 2015. Proceedings, volume 8931 of Lecture
Notes in Computer Science, pages 80–98. Springer, 2015.

Andrew Reynolds, Tim King, and Viktor Kuncak.
Solving quantified linear arithmetic by counterexample-guided instantiation.
Formal Methods Syst. Des., 51(3):500–532, 2017.

Andrew Reynolds, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli.
High-level abstractions for simplifying extended string constraints in SMT.

15

In CAV (2), volume 11562 of Lecture Notes in Computer Science, pages 23–42.
Springer, 2019.

Andrew Reynolds, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli.
A decision procedure for string to code point conversion.
In IJCAR (1), volume 12166 of Lecture Notes in Computer Science, pages 218–237.
Springer, 2020.

Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura.
Finding conflicting instances of quantified formulas in SMT.
In Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland,
October 21-24, 2014, pages 195–202. IEEE, 2014.

Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstic, Morgan Deters, and
Clark W. Barrett.
Quantifier instantiation techniques for finite model finding in SMT.
In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 - 24th International
Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013.

15

Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 377–391.
Springer, 2013.

Andrew Reynolds, Cesare Tinelli, Amit Goel, and Sava Krstic.
Finite model finding in SMT.
In Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, volume 8044 of Lecture Notes in Computer Science, pages 640–655.
Springer, 2013.

Andrew Reynolds, Cesare Tinelli, Dejan Jovanovic, and Clark W. Barrett.
Designing theory solvers with extensions.
In Clare Dixon and Marcelo Finger, editors, Frontiers of Combining Systems - 11th
International Symposium, FroCoS 2017, Brasília, Brazil, September 27-29, 2017,
Proceedings, volume 10483 of Lecture Notes in Computer Science, pages 22–40.
Springer, 2017.

15

Andrew Reynolds, Arjun Viswanathan, Haniel Barbosa, Cesare Tinelli, and Clark W.
Barrett.
Datatypes with shared selectors.
In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated
Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
volume 10900 of Lecture Notes in Computer Science, pages 591–608. Springer,
2018.

Andrew Reynolds, Maverick Woo, Clark W. Barrett, David Brumley, Tianyi Liang, and
Cesare Tinelli.
Scaling up DPLL(T) string solvers using context-dependent simplification.
In CAV (2), volume 10427 of Lecture Notes in Computer Science, pages 453–474.
Springer, 2017.

15

	Architecture
	Feature Highlights
	Evaluation

