Quickstart Guide

First, we create two constants x and y of sort Real , and two constants a and b of sort Integer . Notice that these are symbolic constants, but not actual values.

x, y = Reals('x y')
a, b = Ints('a b')

We define the following constraints regarding x and y :

\[(0 < x) \wedge (0 < y) \wedge (x + y < 1) \wedge (x \leq y)\]

We check whether there is a solution to these constraints:

solve(0 < x, 0 < y, x + y < 1, x <= y)

In this case, there is, so we get output:

[x = 1/6, y = 1/6]

We can also get an explicit model (assignment) for the constraints.

s = Solver()
s.add(0 < x, 0 < y, x + y < 1, x <= y)
assert sat == s.check()
m = s.model()

With the model, we can evaluate variables and terms:

print('x:', m[x])
print('y:', m[y])
print('x - y:', m[x - y])

This will print:

x: 1/6
y: 1/6
x - y: 0

We can also get these values in other forms:

print('string x:', str(m[x]))
print('decimal x:', m[x].as_decimal(4))
print('fraction x:', m[x].as_fraction())
print('float x:', float(m[x].as_fraction()))

Next, we assert the same assertions as above, but with integers. This time, there is no solution, so “no solution” is printed.

solve(0 < a, 0 < b, a + b < 1, a <= b)

Example

examples/api/python/quickstart.py

  1#!/usr/bin/env python
  2###############################################################################
  3# Top contributors (to current version):
  4#   Yoni Zohar, Aina Niemetz, Alex Ozdemir
  5#
  6# This file is part of the cvc5 project.
  7#
  8# Copyright (c) 2009-2024 by the authors listed in the file AUTHORS
  9# in the top-level source directory and their institutional affiliations.
 10# All rights reserved.  See the file COPYING in the top-level source
 11# directory for licensing information.
 12# #############################################################################
 13#
 14# A simple demonstration of the api capabilities of cvc5, adapted from quickstart.cpp
 15##
 16
 17import cvc5
 18from cvc5 import Kind
 19
 20if __name__ == "__main__":
 21  # Create a term manager
 22  #! [docs-python-quickstart-0 start]
 23  tm = cvc5.TermManager()
 24  #! [docs-python-quickstart-0 end]
 25  # Create a solver
 26  #! [docs-python-quickstart-1 start]
 27  solver = cvc5.Solver(tm)
 28  #! [docs-python-quickstart-1 end]
 29
 30  # We will ask the solver to produce models and unsat cores,
 31  # hence these options should be turned on.
 32  #! [docs-python-quickstart-2 start]
 33  solver.setOption("produce-models", "true")
 34  solver.setOption("produce-unsat-cores", "true")
 35  #! [docs-python-quickstart-2 end]
 36
 37  # The simplest way to set a logic for the solver is to choose "ALL".
 38  # This enables all logics in the solver.
 39  # Alternatively, "QF_ALL" enables all logics without quantifiers.
 40  # To optimize the solver's behavior for a more specific logic,
 41  # use the logic name, e.g. "QF_BV" or "QF_AUFBV".
 42
 43  # Set the logic
 44  #! [docs-python-quickstart-3 start]
 45  solver.setLogic("ALL")
 46  #! [docs-python-quickstart-3 end]
 47
 48  # In this example, we will define constraints over reals and integers.
 49  # Hence, we first obtain the corresponding sorts.
 50  #! [docs-python-quickstart-4 start]
 51  realSort = solver.getRealSort()
 52  intSort = solver.getIntegerSort()
 53  #! [docs-python-quickstart-4 end]
 54
 55  # x and y will be real variables, while a and b will be integer variables.
 56  # Formally, their python type is Term,
 57  # and they are called "constants" in SMT jargon:
 58  #! [docs-python-quickstart-5 start]
 59  x = solver.mkConst(realSort, "x")
 60  y = solver.mkConst(realSort, "y")
 61  a = solver.mkConst(intSort, "a")
 62  b = solver.mkConst(intSort, "b")
 63  #! [docs-python-quickstart-5 end]
 64
 65  # Our constraints regarding x and y will be:
 66  #
 67  #   (1)  0 < x
 68  #   (2)  0 < y
 69  #   (3)  x + y < 1
 70  #   (4)  x <= y
 71  #
 72
 73  #! [docs-python-quickstart-6 start]
 74  # Formally, constraints are also terms. Their sort is Boolean.
 75  # We will construct these constraints gradually,
 76  # by defining each of their components.
 77  # We start with the constant numerals 0 and 1:
 78  zero = solver.mkReal(0)
 79  one = solver.mkReal(1)
 80
 81  # Next, we construct the term x + y
 82  xPlusY = solver.mkTerm(Kind.ADD, x, y)
 83
 84  # Now we can define the constraints.
 85  # They use the operators +, <=, and <.
 86  # In the API, these are denoted by Plus, Leq, and Lt.
 87  constraint1 = solver.mkTerm(Kind.LT, zero, x)
 88  constraint2 = solver.mkTerm(Kind.LT, zero, y)
 89  constraint3 = solver.mkTerm(Kind.LT, xPlusY, one)
 90  constraint4 = solver.mkTerm(Kind.LEQ, x, y)
 91
 92  # Now we assert the constraints to the solver.
 93  solver.assertFormula(constraint1)
 94  solver.assertFormula(constraint2)
 95  solver.assertFormula(constraint3)
 96  solver.assertFormula(constraint4)
 97  #! [docs-python-quickstart-6 end]
 98
 99  # Check if the formula is satisfiable, that is,
100  # are there real values for x and y that satisfy all the constraints?
101  #! [docs-python-quickstart-7 start]
102  r1 = solver.checkSat()
103  #! [docs-python-quickstart-7 end]
104
105  # The result is either SAT, UNSAT, or UNKNOWN.
106  # In this case, it is SAT.
107  #! [docs-python-quickstart-8 start]
108  print("expected: sat")
109  print("result: ", r1)
110  #! [docs-python-quickstart-8 end]
111
112  # We can get the values for x and y that satisfy the constraints.
113  #! [docs-python-quickstart-9 start]
114  xVal = solver.getValue(x)
115  yVal = solver.getValue(y)
116  #! [docs-python-quickstart-9 end]
117
118  # It is also possible to get values for compound terms,
119  # even if those did not appear in the original formula.
120  #! [docs-python-quickstart-10 start]
121  xMinusY = solver.mkTerm(Kind.SUB, x, y)
122  xMinusYVal = solver.getValue(xMinusY)
123  #! [docs-python-quickstart-10 end]
124
125  # We can now obtain the values as python values
126  #! [docs-python-quickstart-11 start]
127  xPy = xVal.getRealValue()
128  yPy = yVal.getRealValue()
129  xMinusYPy = xMinusYVal.getRealValue()
130
131  print("value for x: ", xPy)
132  print("value for y: ", yPy)
133  print("value for x - y: ", xMinusYPy)
134  #! [docs-python-quickstart-11 end]
135
136  # Another way to independently compute the value of x - y would be
137  # to use the python minus operator instead of asking the solver.
138  # However, for more complex terms,
139  # it is easier to let the solver do the evaluation.
140  #! [docs-python-quickstart-12 start]
141  xMinusYComputed = xPy - yPy
142  if xMinusYComputed == xMinusYPy:
143    print("computed correctly")
144  else:
145    print("computed incorrectly")
146  #! [docs-python-quickstart-12 end]
147
148  # Further, we can convert the values to strings
149  #! [docs-python-quickstart-13 start]
150  xStr = str(xPy)
151  yStr = str(yPy)
152  xMinusYStr = str(xMinusYPy)
153  #! [docs-python-quickstart-13 end]
154
155  # Next, we will check satisfiability of the same formula,
156  # only this time over integer variables a and b.
157
158  # We start by resetting assertions added to the solver.
159  #! [docs-python-quickstart-14 start]
160  solver.resetAssertions()
161  #! [docs-python-quickstart-14 end]
162
163  # Next, we assert the same assertions above with integers.
164  # This time, we inline the construction of terms
165  # to the assertion command.
166  #! [docs-python-quickstart-15 start]
167  solver.assertFormula(solver.mkTerm(Kind.LT, solver.mkInteger(0), a))
168  solver.assertFormula(solver.mkTerm(Kind.LT, solver.mkInteger(0), b))
169  solver.assertFormula(
170      solver.mkTerm(
171          Kind.LT, solver.mkTerm(Kind.ADD, a, b), solver.mkInteger(1)))
172  solver.assertFormula(solver.mkTerm(Kind.LEQ, a, b))
173  #! [docs-python-quickstart-15 end]
174
175  # We check whether the revised assertion is satisfiable.
176  #! [docs-python-quickstart-16 start]
177  r2 = solver.checkSat()
178  #! [docs-python-quickstart-16 end]
179
180  # This time the formula is unsatisfiable
181  #! [docs-python-quickstart-17 start]
182  print("expected: unsat")
183  print("result:", r2)
184  #! [docs-python-quickstart-17 end]
185
186  # We can query the solver for an unsatisfiable core, i.e., a subset
187  # of the assertions that is already unsatisfiable.
188  #! [docs-python-quickstart-18 start]
189  unsatCore = solver.getUnsatCore()
190  print("unsat core size:", len(unsatCore))
191  print("unsat core:", unsatCore)
192  #! [docs-python-quickstart-18 end]